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ABSTRACT

The particular problem with which the research was concerned
was the development of a technique to discriminate between coughs
and other audible phenomena which originate in a hospital environment.
Pattern recognition provided such a technigque. Experimental data was
available in the form of audio tape recordings.

Implementation of a Bayes catcgorization decision requires
knowledge of the underlying conditional joint probability density
functions of the measures which typify the patterns to be recognized,
An adaptive pattern classifier model was presented which circumvented
the difficulty of estimatling these functions. The model is gencrally
applicable to the two-class case in which the patterns to be classificd
consist of sequantial segments of data known to have originated from
the same class. The model took the form of a layered machine. The
first stage was a minimum distance classifier with respect to point sets
while the second stage utilized the {iist stage binary valued outputs to
implement a Bayes deciéion.

The fzature extraction and measure selection problems were
examined experimentally. Tecature calculation algorithms were devel -
opoed which are gencially applicable to time
effectiveness of an algorithm for selection of a set of candidate measures
was verilied,
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Experimental results indicated that, for the particular data with
which the research was concerned, an assumption of MNarkof{f-1 dependency
between sequential first stage decisions of the pattern classifier was
warranted.

A pattern classifier which was based on this assumption

classified 97.9% of the patterns presented to its input corcectly.
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CHAPTER 1

INTRODUCTION

A group at The University of Texas Southwestern Madical School in

Dallas, Texas is engaved in research in the general area of respiratory

*
diseas=2s, One parameter of importance in thair studies is the numbar of
times that a patiant coughs during a given time interval. The primary ob-
jective of the reszarch outlined in this repert is to develep . ¢ "nique
which may be mechanized, either as special purposec circuitry Lo operate
in a real-time environment or as a generil purpose computer program, to
obtain this parameter.

The results may find additional application in pharmaceutical
evaluation. Experisnce indicates that self-evaluation of cough activity
by the patiant is subjective to a pronouncad degraa. In the evaluation
of a drug proposed as a cough alleviating agent, an objactive method of
evaluation of the results of administration of the drug is necessary.

Yor the purposes of this investigation audible phenomena which

occur in the hosgital environment, but which are not coughs, will be

*
Research in progress under the supervision oi Dr, R. G. Loudon,

Department of Internal Medicine, The University of Texas Southwestern
Medical School supported by a grant {rom the Committee for Research
on Tobacco and Health of the American Meadical Association Lducation
and Research Foundation.




e

referred to as artifacts. A preliminaiy attempt by personnel at Scuthwestern

Madical Scheol to identify coughs by means of an empirically adjusted

filter and voice controlled relay were unsuccessful . When adjusted for

actuation by coughs, the system also responds to many artifacts. This
indicated that more powerful classifying techniques would be required.

The purpose of the outlined 1esearch was to develop a means {or
discriminating between coughs and artifacts. Patiern recognition pro-
vides such a technique.

During recent years a good deal of eftort has baen directed toward
the study of adpative pattern recognizers. These studizs {all into two :
broad categories. The bulk of the literature in the field consists of
mathematical studies indicating that a given procedure is optimal, or
convergas to an optimal procedure for a specified constraint under a
given sel of presumptions regarding underlying probability density
functions. The second approach that is taken is {o apply pattern re-
cognition techiiques to a set of data criginating from a particular
experiment for which the underlying probability functions are unknown
or cannot be approximated by a8 computationally managable analytical
cxpression and for which optimality cannot therefore be shown. Tha
research outlined in this investigation falls into the latter category.
The basics of pattern recognition are outlined in Chapter 2 of the

report with emphasis placed on those portions of the theory that




bear on the particular pattern 1ecognition machine selected for the described

research. Dala acquisition techniques and processing used to acquire the

meusures utilized in ke recognition process and the basis on which the

particular meaures chosen were selected are outlined in Chapter 3. The

mach n¢ chosen te implenient the decision process is described in Chapter 4,

il M A e e

Experimental results are presentod in Charter 5.




CHAPTER 11

GENLKAL PATT. RN RECOGNITION MODEL

2.1 Basic Model

A gencral review of pertinent portions of pattern recognition theory

are presented in this chapler of the report. The notation employed is,
; , 10
for the most part, that used by Nillson.

A pautern classifier has as an input a sct of srdered (for our pur~
poscs, real) numbers gleaned {rom an experiment. These numbers will be
refenned 1o as measures and guantitatively descitbe an event. It will be
convenient to visualize a set of d mecasuies &s o point in d--dimensional
2% : : - vd T : : i " "
Luclidian space L, This space will be releired to as "patlen space”.
The rectangular coordinates inthe point are the rcal numbers x4, %o, ...
xd. The vector X extending from the origin to the point (X, Xz, ... xd)
will also be usced to represent the pattern. X will be usco to deslignate
woth the point and the vectoy . For computational purposes it will be
censidered a column matrix,

The output of the pattern clagsifier is a decision as to which of
R ciasses the event desciibed by the measuice belongs, R > 2. The

) . o , , d
pattein recognizer, then, is a device which maps the points of £ iato
Ly ! { n 1(1 )
the category numbers 1, 2, ..., R. Presuming points in L~ which map

into different categories cocupy disjoint regions in L, one may vigualize
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a partitioning of the space by surfaces arranged so that they separate the
point sets belonging to the different categories. These aic called decision
surfaces. If the point setls are nct disjoint, decision surfaces may still be
placed in accordance with some predetermined criteria,

A pattcin classifier is "adaptive" if it has the capability of modify -
ing its parformance (repositioning the decision surfaces) in accordance with
maasures prasanted Lo its input. The proccss of modification of the perfor-
mance of the machine is termed "lcarning” while the act of aiding this
lcarning ig called "training”. A sect of data, chosen as typical, used to
accomplish the ttaining i1s called a "taining set”,

The manner in whiich training is conducted gives rise to two bioad
classifications of learning called "leaining with @ teacher” and "learning
without a tcacher” . Loeatning without @ teacher buplics that the machine
modifi¢cs fts performance without explicit instruction as to the class member -
ship of the vaining datae. In lcaining with a teacher the true membership
of the input measuies is known a priori.

Tor the former type of machine, taining may take place throughout
the working cycle of the machinz, In the latler case, traning is done
prior Lo the use of the machine as a clesgificr. The type of machine with
which this report s concerned utihizes learning with a teacher.,

2.2 Discriminant 'unctions
The decisiorn swiaces previousty descriped may be implicitly defined

Ly a set of functions containing R membors . Define g (X)), g, (X).

vy (X

R

e s

R




as scalar, single-valued functions of the pattern X with the property that:

g, W>9,0 Lj=L 2, ... R
: 1] (2-1) ‘
for all X ecategory i. =

These functions are called "discriminant functions." Presuming
that the functions are continuous at the boundaries, it is seen that the
surface separating contiguous regions i and j is defined by:

9,0 =g, =0 (2-2)

Discriminant functions provide a means {for convenient imple -
mentation of pattern classification. Yor a pattern X which is to be
classified as helonging to onc of R classes, the R disariminant functions
are calculated and the pattern is assigned to the categoty for which the

associated discriminant function has the largest value.

A special case of particular interest is that where R = 2. In this
case the partition of pattern space into the two regions is called a dichotomy. 3

The asscciated discriminant functions may be combined to yield:

g(x)égl(_@-gg(ﬁ)

g(X) >0 =» X eclass ] (2-3)

u

g(X) <0

g(Xx) =0

X eclass 2

)

undefined or arbitrary classification
Discriminant functions may be seclected in a varicty of ways de-

pending primarily upon the extent of a priori knowledge of the patterng to

be classifind., As previously indicated, the method employed in the described

rescaich utilizes training.
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2.3 Training

Training methods have been brcadly grouped into two categories-—-
parametric and non-parametric.
The criteria for differentation between these two types of training
) . ) ) ) 10
are not consistent among atl researchers in the field., Nilsson™ ~, for
example, classifics as parametric any training which assumes that the
patterns {0 be categorized are known a priori to be characterized by a
, 12
set of parameters, some of which may be unknown. Sebestyen ', on the
other hand, reserves the parametric lakel for patterns originating from a
random process with an underlying probability distribution function of
known form which is described by a set of parameters, some of which
may be unknown and wnich arec themselves random variables. This latter
definition is an extension of that encountered in estimation thcoiy.
In either case, training consists of computing estimates of the
unknown paramcters.
An important example of non-parametric pattern classification is
that where the pattern space is deterministic in nature.
Tor the purposz of this report, training procedures will bLe
labeled as probabilistic or non-probabilistic depending upon the assump-
tions madeas o the nature of the patitern space. In some cases the line

will not be clearly drawn,




2.4 Machine Structure
2.4.1 Statistical Decision Theory

If the pattern space is probabilistic and the underlying probability
density functions and a priori probability of occurrences of the various

classas arec known, a decision criterion may be derived which is optimal
under a given constraint.
Define:

c(i/j) = cost of deciding X ¢ i when in
actuality X e].

p(j/X) = conditional probability that X ¢ j
given that X has occurred.

=)

(2-4)
Lx(i) = % c(i/NpG(/X) = conditional average loss
X j=i

for the decision X € i;
defined a priori,

It is to be noted that X is a vector. p(j/X) wili therefore take the

form of a conditional joint probability:

p()/ﬁ) = p(j/-\'l s Xa, <y Xd) (2-5)

A decision which minimizes the above conditional average loss is
called optimum and a machinc which implemants such a decision is called
a Bayes machine.

Lxamining equation (2-4), it is seen that in order to derive an
opilmum dccision a set of costs must be assigned which weight the re-
lative importance of the different errors in classification,

In addition, the

a posteriori probabilities p(j/_z(_), i=1,2, ..., Rmust be known., This

I

i o




latter requirement is almost never accomplished in practice and would be

difficult to estimate directly from experimental observations. Bayes'

theorem, however, allows the calculation of the a pousteriori probabilities

in terms of estimable quantities:

RPN <19.94)):10)] _

p{%/j) is called the “likelihood" of j with resnect to X. Substituting (2 -6)

into (2-4):

SR R [ T T I D IR E AT T

1 R
L. G)= ~ L cli /j i (2-7)
X ) P 4 (i/9)p(X/i)p(j)
It is seen that 1/p(X) is @ common term for all j. Minimization of

(2-7) is equivalent to minimization of (2-8):
R
LX(J') = ‘2] c(1/1)p(X/ e ) (2-8)
X j=

Equation (2-8) takes a form particularly amcnable to calculation if

the costs of 1incorrect decisions are made equal while the cost of a correct
decision is set at zero:

¢ S

cli/iV =1 - § (2 -9)
AN 47 1J v
where 611‘ is the Kronecker de'ta function.
Substitution of (2-9) into (2-8) yields:
(i) I;E (X/1pQ) (x/1)p(i)
L (1) = p(X/i)pl) - pX/1)pl
X j=1 (2-10)

= p(X) - px/UpQ)
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Minimization of (2-10} over all i, i =1, 2, ... , R impliecs maximiza-
tion of p(X/i)p(i), i=1, 2, ... , R. The discriminant functions for the R
categories would therefore be the gquantities p(X/i)p(i), i=1, 2, ... , R,
and the decision made would be in accordance with discriminant criteria
outlined in section 2.2, For this speacial loss function, callad & symmeirical
loss function, the decision criterion has been given the name "Ideal Observer”
criterion in decision theory. It can be shown that this decision rule
minimizes the probability of erroneous classification.

In the event that the a priori probabilities p(i), i=1, 2, ..., R are
unknown and are therefore taken as being equally probable, the discriminant
function is of the form gi(ﬁ) = p{X/i) and the criterion is known as the
"Maximum Likelihood" criterion in decision theory. This criterion implies
that X originates from the category for which its occurrence is most prob-
able.

Yor the probabilistic decision criteria outlined, training consists
of estimating the v;arious probabilities. Since X is a vector, the prob-
abilities p(X/i) aie joint conditional probabilities and must be estimated
for all points in pattern space. This is a formidable task if the dimension -
ality of X is large unless some simplifying assumptions are made. A common
ascumption that is made is that the underlying probability density functions
are Gaussian, in which case training consisis of esiimating the unknown

mean and covariance matrices of the density functions. This line of attack
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will not be pursued since the measures employed do not exhibit Gaussian

properties and any analytlical calculations employing this assumption would

be simply a mathematical exercise,

A brief summary of the probabilistic pattern recognition model for

the symmetrical loss function is in order at this point. The input to the

pattern classifieris asetof measures which is represcnted as a vector

od . ;
X in E7, Training consists of cstimating the associated likelihoods and

i

o e . . .a ) .
a priori probabilities for all points in £ for categories i =1, 2,

R. The discriminant function for category i is gi(g) = p(X/i)p(i). Classi-
fication of a vector X of unknown class membership is accomplished by

evaluating gi(ﬁ) fori=1, 2, , R and assigning X to the category {or

which the associated g(X) is largest. Decision surfaces are defined by

the relationshps gi(g); i, j=1,2, ..., R —-i#j.

2.4.2 Linear Discriminants

A class of discriminant functions with a particularly simple physical

implementation is the linear discriminant function:

(2-11)

=W X+w, |
- = i,d+1

For the special casc of R = 2, the relationship of cquation (2-3)

applies. Substituting (2-11) irto (2-3) yieclds:

. -'- - . —
9lX) = WX+ wy ) "W X -w, o

I
o3
>
+
3
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, . . . . d
It is noted that the relationship W+ X = 0 defines a hyperplane in E

which passes through the origin, W- X+ w = 0 defines a hyperplane with

d+1

the distance to the origin dependent upon |\_/y| and Wd+l'

It will be convenient at this point to define an augmented vector

X' = (Xl' xz, cee o X 1}). Lquation {2-12) then takes the form:

g(X) = w- X' (2-13)
+1

v

[t is to be noted that, although X and W arc vectors in Ed
equation (2-13) set equal to zero defines a dichotomizing hyperplane in
E~. A pattern set for which a hyperplane exists such that all points
belonging to category | are on one side of the hyperplane and all points
belonging to category 2 are on the cpposite side of the hyperplane is said
to be linearly separable. Given such a training set, training consists of

finding a W which satisfiecs the following relationship:

g(X) = W+ X' >0 for all X e class 1

(2-14)
< 0 for all X ¢ class 2

A device capable of physically implementing equation (2-14) is

the threshold logic unit (TLU). The TLU has d inpuls which are wzighted

by multiplying cach input vy a constant. The weighted inputs are then
summed and fed into a threshold device., 1f the summed input is greater
than a pre-set bias level, the output of the threshold device is a high
level; if the summed weighted inputs are below the bias level, the output

of the thresheld device is a low level. Yor our purposes, the high level
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output corresponds to a category 1 membership decision while the low level
corresponds to a category 2 membership decision. The inputs ara the d
measures of the unaugmented pattern and the weighls correspond to the first
d components of W. The bias level is associated with Wil

An example of a circuit which comprises a TLU is a resistive summing
network feeding a high gain amplifier driven into saturation.

Summarizing the properties of a TLU, the dichotomizing surface in
Ed is a hyperplane which has an orientation given by the weights wi, wy,
‘e s wd with a position proportional to Wd+l' The distance from the

hyperplane to an arbitrary pattern X (unaugmented) is proportional to the

value of g(X) .
2.4.3 Piecewise Linear Machines

Another concept which will be of importance in tha outlined research

is that of a piecewise linear machine. Minimum distance classifiers with

respectto point sets constitute a sub-class of piecewise linear machines
and will be used for illustrative purposes.

Suppose that it has been determined that the patlerns to be classifed
cluster (are "close to") aboul some predetermined set of prototype points.
In the discussion which follows X will be unagumented. Consider the
2 R. A reas

2, ... , R. Areagsonablo decicion rule for ot

X is to assign X to that class iy for which the distance between X and the
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gio is less thar the distance betwcen X and any other Ri' Equivalently, one

may compare the squared distances.
The squated Luclidian distance between points X and _I:i is given by:

X-p)”=&-p) (X-P) (2-15)

[><

. P (2-1G)

=X-X-2X-P+P-P.
- - 1 L

It is secn that a choice of the minimum squared distance is equivalent

to ii'e selection of the maximum:

= . -/ . ‘7
gl,()_() g;i 1/22- b, (2-17)

Comparing equaticn (2-17) with equation (2-11), it is seen that:

w..=p1.. i=1,2, ... , R
Y ] i=1,2, ....d
(2-18)
y - — 7P,
Wiogey T V2R R

and the decision criterion is as previously outlined.
Suppose that, rather than a single point typifying a ciass, Li
prototype points are associated with class i, i=1, 2, ... , R. We may

define the R discriminant functions:

g,(¥) = max [g].U)(“_O]
- max [Ei(J)_ X-1/2 Bi(J),Bi(J)] (2-19)
j=1.,2,. - Ly
i=1, 2, .
G) on. .
The g, (X)is called a subsidiary discriminant function and is seen to be of the form of

equation (2-17) which is linear in X. Since each of the gi()_() is a piecewise

linear function of X they are called pieccewise iinear discriminant functions.
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The decision surfaces waich they describe are sections of hypoerplanes. It
is noted that for the particular constraints imposed that the decision regions
described are convex.
2.4.4 Layered Machines

It Llas been :Jhownwthat for the case of K = 2, a special class of
circuits called layered inachines implem2nt a piccewise linear machine.

A layered machine is a network of TLUs organized in layers so that
the inputs to each bank of TLUs are the outputs o1 the preceeding bank, with
the exception of the first bank, whose inputs are the pattern Lo be classified.
The last bank consists of a single TLU.

2.5 General Model Summary

This chapter of this paper has reviewed those tepics in pattern
recognition theory which have a direct relavion 1o the particuler pattern
classifier which was implemented. The specific patten ciassifiar used in

the research is described in Chapter 5.




CHAPTER 111

DATA ACQUISITION AND FEATURE CALCULATION

3.1 Introduction

A decision as to what to m2asure must be made early in an applied
pattern recognition progream. The typ2 of fcature utilized will, of nacessity,
vary depending upon the particular application, Tor tha casa of cough
categorization, the physiological model of the cough reflaex would b2
expected to indicate candidate features. This physiolegical modsl is
prasented in this chapter of this report and is followed by a description
of data acquisition methods and an outline of the algorithims used for

feature calculation,

3.1 Physiological Considerations

3.1.1 The Raspiratory Meachanism
Alr enters the rospiratory system vi. the oral or nasal cavities
which opon into the pharynx. The pharynx separates into the trachea and
the esophagus diractly ahove the larynx. At the point of division, food is
separated fiom ai, foed beiny diverted to the esophagus by the closurae of
the epiglottis, a flap which clo.3s over the opening of the tiacheaa when
food touches the pharynx. When the epiylotlis is not hiocking the open-

ing to the trachea tue lower respiratory tract presents less resistance to

1o
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the flow of air than the path through the esophagus. Ventilation is thus
provided to the lungs.

The larynx is located at tha top of the trachea. Tho vocal cords
are the portion of the larynx that produce sound. Thesa cords are two
small vanes located on either side of the air passageway. The vanes
meat at an angla at the back of the larynx. As the muscles of the
larynx are contracted, closure of th2 vanas starts at the point of in-
terscction and works its way to the base of the triangle thay form. During
phonation they essentially c¢lose olf the trachea. Air forced through the
closed vanes sets up a lateral vibration which modulalas the air stream
at audible frequencies. The frequancy of vibration is determined Ly the
degres cf contraction of muscles in the larynx.

The trachea continuas below the larynx to a point beneath the top
of the lungs where it branches into the bronchial system. The bronchi
are tubes of varying diameter, 2ach bronchus branching into a network
of smaller bronchi, thareby forming the "bionchial tree' . The smallest
¢f the bronchi branch into the alveolar ducly which connact to the alveolar
sacs via atria. The alveolar sacs are encasced in the pulmonary membrane,

which has a thickness of from l to 4 microns (several times less than the

RRRVIN

thickness of a rad blood cell). It is in the alveolar sacs that tha oxygen-

carbon dioxide exchange lahes place bawween the bDlood and the an ir the
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The lungs are enclosed in the thoracic cage. A nagative pressurc
exists in the pleural cavity (a potential space between the lungs and chest
wall) with respact to the interior of the tungs. An expansion of the thoracic
cagz therefore axpands the lungs, while a contraction of the cage produces
expiration.

The major muscles which enter into inspiration ara the diaphragm,
the extzarnal intetcostals, and a number of small muscles in the neck. Thea
downward movement of tac diaphragm pulls the bottom of the plaural cavitly
downward (thereby elongcting it) while the external intercostals and neck
muscles lift the front of the cage, causing the ribs to angulate forward
(increasing the thickness of the cage).

The major muscles »f expiration arc the abdominals and, to a lesser
extent, the internal intercostals. The abdominal muscles pull downward on
the chestl cage (decreasing the thoracic thickness) and force the abdominal
contents upward against the diaphragm (decreasing the longitudinal dimen-
sion of the pleural cavity), The internal intercostals aid stightly in expira-
tion by pulling the ribs downward (decreasing the thickness of the chast).

3.1.2 The Cough Reflex

The cough reflex provides a means {or the body to clear its airways.
It is triggered by an irritant touching the surface of the glotlis, the trachea,
or @ bronchus, The respiratory mnuscles first contract very strongly building

up high pressure in the lungs while simultancously, tho epiglottis blocks
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- the trachea and the vocal cords clamp tightly closed. These impediments

to air flow are suddenly removed,

This allows the pressurized air to flow

out of the lungs at high velocities carrying unwanted particles with it,
Air flow and pressure measurements have been made during coughs

on normal subjects and patients suffering from various respiratory diseases.

. 4. .
A study by Whittenberger and Mead indicated that peak interthoracic pres-

sure relative to aimospheric pressure 1angad between 90 and 152 mm hg on

the six subjects used (three normal, one asthmatic, two with emphysema

of long standing). Maximum flow rates ranged between 480 and 700 liters

b

per minute {or the normals and 25 to 150 lilers par minate for the patients

with emphysema. The total volume expired during the first 0.2 sec of the

D 1]

cough renged from 0.15 liter for one of the patients with emphysama to
1.19 liters for one of the normals. The pressure was sustained for a
considerably longer parindof time for the diseased subjects than for the

normal, indicating a higher impedance to flow and decreased efficiency

of the cough.

Other studies have radiologically examined the outline of the

tracheca and bronchi during cough. Therc scems to be no gquestion as to

whether or not thase passages contract during the cough, but precisely
what mechanism is involved is in doubt. It has

has been shown cxperimentally

that the airway passages contiact even during normal expiration.
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_IRicnzo postulated a true peristaltic action which aided in the

explusion of the imritant, Qther researchers disagree, stating that the

contraction, although variable along tha length of the airways, is not a
coordinated peristaltic action at ali, but suggest that the contraction is
simply a means for increasingthe laminar air velocity to that required
{or efficient cleansing of thec airways.

There is some indication that the increcased resistance to {low
is highly localized. Persons suffering from emphysema, asthma, and
bronchitis are unable to achieve these high velocities. A study was
performed in which a bronchiodilator was administered to patient, suf-
fering from bronchitis, others having emphysema, and a group of normals
for control .1 It was found that tho air velocily increased for those with
bronchitis, was unchanged for those with ecmphysema, and was un-
changed for the normals. This gives some indication as to 'the general
origin of the resistance to flow in the two discase classes.

3.7 Data Acquisition
3.2.1 Recording

The data with which this paper is conccrmecd were obtained
in the form of analog tapc recordings. Tha recordings used {all into two
categories ~- those recorded dircctly from hospital rooms at Woodlawn
Hospital in Dallas, Texas and recordings of forced coughs and simulated

P e
aflitactld,
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The hospital recordings were obtained with the following equip-
ment arrangement. Microphones rere placed in selected hospital rooms,
primarily in closets. The signals from the micrephones were carried,
via long cables, to recording apparatus in the bascment of the building.
The signals from the microphones were recorded on a continuous tape
loop. The amplitied sigral from the microphones were operated on by
a voice controlled relay connected in parallel with the continuously
operatled tape recorder. A filter was adjusted empiricially so that
the voice controlled relay threshold was not exceeded by all artifacts,
but it was not rossible to efficiently separate all coughs and artifacts
by this adjustment. The voice controlled relay actuated a sccond tape
recorder wihich was operated in a start--stop mode. The continuous
loop recorder output provided the input for the start--stop recorder
and aliowe=d sufficient delay for the second 1ecorder to come up Lo
speed after having been actuated by the voice controlied relay. Re-
cording speed of that start--stop recorder was 3 3/4 ips.

Recordings were made by the above described equipment mostly
at night, which is a period of light hospital activity, to avoid recording
the numecrous acoustical artifacts which occur during the normal daylight
rodtine. The cquipment was unatlended for the majority of the time that

reccrding tock place.

21
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Tha recordings so obtained are typically characterized by high
background noise (with respect to acoustical events occwrring in the
hospital rooms) and widcly varying recording levels. Fidelity was not
at the most desirable level because of the low recording speeds and the
re-recording. Yor the most pari, however, coughs and artifacts could bhe
distinguished by ear.

Racordings of simulated coughs and artifacts ware made both in
the lahoratorics at Woodlawn Hospital and at The University of Texas
at Austin. Racording speed was 7 1/2 ips and recording levels were
monitored. Coughs were forced coughs of normal subjects, Some arti-
facts, such as conversation and doors closing, were recorded directly.
Others were obtained {rom commercial sound-effects recordings.

3.2.2 Digitization and Seygmentation

Tarly in the research program it was necessary to make a
decision as to the basic philosophy to be foliowed in data reduction,
Two alternatives were apparent. The first was to build special purpose
circullry Lo pre-process Lhe recoraed audio signals; the sccecond was o
digitize the audio data directly and perform all data reduction on a
general purpose computer. The scecond alternative was chosen in the
interests of flexibility.

— mi... 1.,
11 - 4

Two cumpuier f{acilitics were utilizad,

Department at the University maintains a Scientific Data Systems 930
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computer which includes as peripheral equipment analog-to-digital and
digital~to-analog converters. The University cormputation center main-
tains a Control Data Corporation 6600 computer. The SDS 930 is operated
on an open shop basis whilethe CDC 6600 computer is operated on a closed
shop basis. Data digitization was performed by the SDS 930 computer
while the majority of the computations were accomplished by the CDC

6600 computer.

Prior to digitization of the data, spcctrograms were made of a
representative sample of the analog signals. It was found that the
hichest frequency of gignificant magnitude was in the vicinity of 6 Khz.
The Nyquist rate is thercfore approximately 12 K samples/sec. In
practice it would be aesirable to have a sampling rate somewhat in
excess of this value. A program was written for the SDS 930 computer
which allowed digitization at a sampling rate of 16,500 samples,/sec.

The A/D converter performs a 12 hit conversion with a maximum

conversion rate in excess of 30 K conversions/sec. Conversion accuracy

is specified by the manufacturer as+4 the least significant bit, I'ull scale
input usad was + 10v to yield a quantization error of approximately 10 mv,
The central processor memory consists of 8,192--24 bit words. The
nominal length of a signal to be digitized is two scconds. At the 16,500
conversions/sec rate used, the available memory is not adeguate to buffer

the digitized data.
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The magnetic tape units which are included in the peripheral

m

equipment may he operated in an interlaced mode of operation, however.

When operated in this fashion access to the central processor is raquired

only when data is required from the memory. The interlaced mode utilizes a : .

priority interrup!l system. Onec of the priority interrupts is available for

program use in a real-time environment. This interrupt was used to

signal the beginning of a conversion.

The A/D converslon program controls time of sampling to within
-0, + 3.5 microseconds. The digital data is formatted and buffered
in the central processor memory while previous'y converted data is
simultaneously written on digital magnetic tape. The conversion rate
is limitea by the speed of the tape transport. Although a highar con- P
version rate could be accomplished at an 800 bpi data density, 556
bpi recording density was uscd in the interests of greater reliability.

A digital -to-analog conversion sub-routine was included in the
program. Use of the interlace feature was made to allow simultanecus
D/A conversion and reading of the digital tape. It was found that the
D/A output could be directly connected to a speaker to yield an audible
output with sulficient fidelity for monitoring purposes. Additional D/A
features were incorporated to output synchronization and calibration

signals for oscilloscope or oscillograph monitoring.
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The tape recorder output was connected to the input of an adjust-
able filter with attenuation characteristics of 24 db per octave. The break
frequency was set at 4 kHz. The output of the filter was connected to the
computer multiplexer -- A/D converter input.

As previously stated, conversions were initiated by a priority
interrupt. A pulse generator provided the input signal to the interrupt.
The pulsercpetition rate was 16,500 pps, 4+ 1 pps. The output of the
pulse generator was continously monitored by a digital counter.

Conversion was iImtiated and ended by computer console sense
switch operation. After an A/D conversion was completed confirmation
of the digitized signal was made by utilization of the D/A conversion
subroutine.

The digital data tape which was the product of the program was
formatted with 1,000 -~ 12 bit conversions per record. The binary re-
presentation was integer two's complement. An identification record
followed data records within a file, a file consisting of the data con-
verted during an A/D conversion cycle. Adjacent files were separated
by End of File marks with the last file on .he tapc being followed by
double Lnd of I'ile marks.

The CDC 6600 computer's binary representation of integer data
is in one's complement, sixty bits per word. The 6600 was programmed

to reformat tha data.




Varying recording levels in the original analog data required
that the data be normalized with respect to amplitude. This was ac-~
complished by arbitrarily setting the datum point in a file with the
greatest magnitude to a floating point magnitude of 10,0 and scaling
the remainder of the data points in the {ile accordingly. Additionally,
efficient computation by subsegquent programs required that the files be
reformatted so that the identification record preceeded the data in the
file. Provision was also made to ensure that ithe mean of the data was
0. The normalized data was written in binary format cn magnetic tape.

Due to the manual start - - stop digitizing technigue used and

the nature of the original analog data, files contained segements of low

26

level data (backgound noise). It was therefore necessary to locate seg-

ments of the files which contained usable data. An algorithm subse-
quently used to calculate the Fourier series representation of the time
varying signal required that segmeants of data used in the calculation
contain a number of data points exactly divisible by a power of two
(this algorithm is described in a later section of the dissertation).

The divisor chosen was 1024 points. A file was scarched until a value

exceeding a specified threshold L, was encountered. The conversion

number of that value was assigned as the start of a segment. Subsecuent

data poinls were assigned to the segment until no values exceeding L

were found for a pre-specified time interval, t .. The number of conversions

d




G

T

e

27
corresponding to td were subtracted rom the total number of points assigned
to the scgment to obtain the length of the segment. If the scgment so
located was shorter than a specified time limit, Lr' the segment was
rejected. After segmentation of a file was completed, segmeant lengths
were adjusted to be an integral multiple of 1024 points., The values L,

r

t , and Ld ware determined empirically. The following values were

found to give satisfactory results:

td = tr= 1024/15500 sec =1/16 sec

The normalizing factor for eac.. . was recorded for future use in
calculation of the signilicant noisz level.

Alter segmentation was accomplished on the CDC 6600, the
original data was scanned on the SDS 930 by the D/A conversion sub-
rountine. Class identification of the segments and 1024 point subsegments
was confirmed by listening to the D/A converted data,

Sumimarizing the digitization and segmentation programs, analog
data was digitized on the SDS 930 at a conversion rate of 16500 conver-
sions/sec. The data obtained was normalized with respect to amplitude
and subscgmeaented on the CDC 6600 computer. Confirmation of secgmentation
and class identification (cough or artifact) was then made by use of the SDS

930 D/A conversion suproutine.




After the completion of the akove process the digitized data was
on magneatic tape in a format compatible with computation in th2 CDC 6600,
Punched ca:ds were included in the output {rom the G600 ; .~2gram on wihich
were entered segment and class (cough or artifact) fdent.fication. 2taer
the original digitized data was scanned on the $D3 930 to confirm class
identification of the subsegments, the puazhed cards were altered if
original class identification was enoneous «»* sectitn i backgiound
noise identified as a cough). The punched cara:s were then usad as
input data, along with the 6600 formatted tape, for subseguant programs
on the CDC 6600. Data notinciuded within one of the subscgments was
notl considered in subseguent calculations.
3.3 TI'eaturc Lxtraction
The measures calculated are described in sections 3.3.1 through

3.3.4 of this report, They fall into four broad categorics:

1) those concerned with the magnitude of the normaliz=d

amplitude of the signal.

2} those which represent the fony of the envelope of the signal,

3) zero crossing representations.

4) speclial analysis measures.

3.3.1 Amplitude Denceity Approximation T'eature

the 1ccorded signals indicated

that an analysis of the shape of the amplitude distibution of the normalized
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signals could offer possibilities as a measure.

A 1024 point subsegemeant of data was operated on to obtain an
est.mate of the probability density function of the amplitude of the signal.
Thirty-one equi-spaced limits were used to yield thirty-two increments.

The incremernt limits are as shown in Table 3-1. It is noted that normaliza-
tion accemplished during reformacting was with respact to the point with
maximum magnitude within a recorded file and that scveral segmants and
subsegments were included within this file. The mean value of all points
within a file was zero, but such was not necessarily the case within a
subsegment.

The algorithm used to implement the amplitude density approximation
is given below. The in.1ioment address calculations take rhe torm of a tree
where the iterative decisions described determine the branch chosen., The
trec terminates with a total numboer of branc hes equal to the number of
clascification intevals.

Define:

I'J, & value of ith sample in a subscgment
Number of intervals used £ ZM4 1

L, i . . )
D =interval width {difference of interval lumits)

\Y% '/=l ZMI)
A ) ,
L = intcrval nummber; highest amplitude value, lowest
.‘.
number; L=1, 2, ..., ?,M 1

o
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Table 3-1
Increment Limits

Amplitude Density and Envelope Amplitude Density

Yeatures
Increment Lower Upper Increment Lower Upper
No. imit Limit ___No. - Limit Limit
1 -9.375 17 0.000 0.625
2 -9.375 ~8.750 18 0.625 1.250
3 -8.750 -8.125 Ja 1.250 1,875
4 -8.125 -7.500 20 1.875 2.500
5 -7.500 -6.875 21 2.500 3.125
6 -6.875 ~6.250 22 3.125 3.750
7 -6.250 -5.625 23 3.75C 4.375
8 -5.625 -5.000 24 4.375 5.000
9 =-5.000 ~-4.375 25 5.000 5.625
10 -4.375 -3.750 20 5,625 6.250
11 -3.750 -3.125 27 6.250 6.875
12 ~3.125 -2.500 28 6.875 7.500
13 -2.500 -1.875 29 7.500 8.125
14 ~1.875 -1.250 30 8.125 8.750
is -1.259 -0.625 31 8.750 9.375

16 -0.625 0.00u 32 9.275
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Xj = dummy variable used in calculation of interval

address of the jth sample point

The following iterative algorithm identifies the interval address of a sample

with a total of M + 1 tests. Parenthesized superscripts denote iteration

number:
x @& ;M8
) j )
if:
- , . 1 .
X.(l 1) -V/ZI <0 L.(l) _ I.'(l 1} 4 2M i
) ] ]
X,(j) =X,(i_]) :
] J
>0:1 (1) _ L.(l—])
= j j
X,(l) - X.(l—i) _ V/’21
) }
i=1, 2, , M
P <0 Lj(M*’l) =M Lj( g
>0 . LJ(MH) _ Lj(M)

It is noted that this artgorithm is most effic.ent if the I','s are

uniformly distributed between + V.

The CDC 6600 is capable of calculating several arthmetic operations

simultancously providing that the calculations arce independent. When a

calculation is dependent upon the outcome of a test, such is not the case.

s vt

Minimization of the number of tests is thorefoic roughl

|
|
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minimization of ¢slculation time. Table lookups were empleyed to obtain
21 and V/Zj in the above algorithm so that these time consuming calculatione
were not made during every iteration.

After the ahove algorithm operated on all data points ina subsegment,
the frequency of occurrence values were normalized in order to estimate the
amplitude density functions by dividing each interval count by the total
number of points classified. For convenience in later calculations, the
array storing the normalized values was then inverted so that the lowest
numbered interval corresponded to the most negative limit.

3.3.2 Envelope Descriptive Features

A preliminary study of the wavefonn of the recorded coughs and
artifacts indicated that the set of candidatc features should include
envelope descriptive measures.

The cough signal startad with a large amplitude and died off
quasi-exponentially, as would be expected from the physiological model.
This was not the case for the majority of the waveforms of recorded
artifacts, The two envelope dependent features which were calculated
were an estimation of the probahility density of the envelope amplitude
and an estimation of the probability density of the slope of the envelope.

3.3.2.1 Envelope amplitude Density l'eaturo

1n order to estimate the probability density function of the ampli-

tude of the envelope, a sampled representation of the envelope was required.
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Initially the peak values of the signal, which were points on the

envelope, were obtained by applying Sterling's interpolation approximation

from numerical analysis. The time of maxima or minima were computed by
differentiation of Sterling's formula and then solving for the time when

the derivative of the approximation is zero. A re-application of Sterling's

formulaticn yielded the interpolated value of the amplitude of the signal

at the time of occurrence of the extrema.

Sterling's approximation attempts to {it a polynomial to the dis-

crete points in the neighborhood of the point of interest. Having evaluated

the coefficients of the poiynomial, one solves for the value at the point of

interest. A comparison of the values obtained by this approach to that

obtained by noting the time of occurrence and the amplitude of the peak

sampled points indicated that little difference existed. In the interesis

of computational efficiency, the algorithm uscd {or extraction of a sampled

representation of the envelope used this latter approach.

A 1024 point subgsegment was scanned to locate the maximum and

minimum points, The time of occurre 1ce and amvlitude of the extreme

were stored in central memory. The elgorithm utilized to obtain the peak

points and times of occurrence is desciibed below. It will be noted that

the maxima are positive and thc minima negative.
Define:

A , . . .
T =magnitude of maximum pcak Lo peak noise
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F. 2 value of jth data point (relative to start of
subsegmant)

Np = number of positive maxima

ne

N

\ number of negative minima
1

>

D = dummy variable

>

th L ,
F amplitude of 4 positive maximum

pl
L ) th ) .
Emnz amplitude of n negative minimum

th . .
M ,= sample number of 4 positive maximum re-
lative to start of subsegment (proportional
to time of occurrence)

L th )
M =sample number of m minimum relative to
nm .
start of subsegment

The following algorithm identifics and stores the quantitics E), .
E , M, and M ., The quantitiecs N and N are computed. Parenthesized
nm pt nm o] n

superscripts denotle iteration number:

S ) 3
plers )L, ©) 0, N ©_y n g

P n

7

Deafine the following cvents:

(&g, (i-D) L ,
pUE{R DT 0y, vl >1, sun Ty 1y

# S8an D(i_l)}

: 1y s
£, -r) >0]
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Define the indicator functions:

: (i) _ {0 it g4 A%
V-
: A

1 if g ¢ A(i)
; (1) ={0 if E ﬁ/B&;
B 1 if € ¢ B
. (1)2{0 T c((f))
C 1 if € ¢C
w1 P Yo hen @ = nY
A B (i)
: M
nm
p Wop
3 nm 1
pW oy
| N 0Ly G,
n n
1f IA(i) Ic(‘) =1 then ¢\ = 071 1y
(i)
Mp{/ =i
)
B, =T
W
N oy G0
p p

Otherwise quantities are unchangeaed from the previous iteration.

After the peak points have been obtained, the b

's and L 's are
P n
usad to estimate the probability density of the envelope amplitude by
implementation of the algorithm described in Section 3.3.1. Thirty-two
increments weare utilized in the approximation. Limit values ware as given
in Table 3-1.
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3.3.2.2 Envelopc Difference Density Feature
The slope of the envelope was approximated by dividing tha dif-
ference in amplitude of adjacent extreme points by the number of sampling
intervals between these points. All quantities required for these calcula-
tions were obtainad by use of the algorithm described in Section 3.3.2.1.
The maximum and minimum points were opecrated on separately.
Prior to calculation of the envelopa differences for the negative envelope,
these minima were replaced by thzir negatives (Lo yield all positive points).
After calculation of the differences .,an estimate of their probability
density was made by application of the algorithm cutlinad in Section 3.3.1.
Sixty-four intervals were used in the approximation with limits as shown in
Table 3-2.
3.3.3 Zero-Crossing Features
A measure which is frequentiy used because of its computational

simplicity is a count of zero cressings of a signal of a signal during a

zero crossings would contain more complete information.
The algorithm that was implemented calculated the time interval

(to the nearest sample period) between zero crossings as a first step. A

dead band (centered at zero) which exceaded the maximum noisz level

was assigned prior to implementation of the algorithm. It wae raquired

that the signal pass through the dead band before a zeto crossing was

& ™
)
|
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Table 3-2
Increment Limits

Envelope Difference

Feature

Incre- Incre- Incre- Incre-
ment Upper ment Upper ment Upper ment Upper
No. Limit No. TIimit No. Limit No. Limit
é 1 ~1.695 17 -0.820 33 0.055 49 0.930
2 | -1.641 18 -0.766 34 0.109 50 0.984
- 3 -1.586 19 -0.71 35 0.164 51 1.039
E 4 ~-1.531 20 -5.656 36 0.219 52 1.094
5 -1.477 21 -0.602 37 0.273 53 1.148
6 -1.422 22 -0.547 38 0.328 £4 1.203
7 ~-1.367 23 ~0.493 39 0.383 55 1,258
8 ~1.313 24 ~0,438 40 0.438 56 1.313
9 -1.258 25 -0.383 41 0.493 57 1.367
10 -1.203 26 -0.328 42 0.547 58 1.422
11 -1.148 27 ~0.273 43 0.602 59 1.477
12 -1.094 28 -0.219 44 0.656 60 1.531
13 -1.039 29 -0.164 45 0.711 61 1.586
14 -0.984 30 ~-0.109 46 0.766 62 1.641
15 -0.3930 31 -0.055 47 0.820 63 1.695

16 -0.875 32 0.000 48 0.875
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tabulated,

Memory locations corresponding to logarithmically spaced bands,
limits of which are given in Tablz 3-3, wcre incremanted in accordance
with tha number of sampling increments hetween zero crossings. After
a 1024 point subsegment of data had been operated on, thae values f{or the
zero crossing period counts were normalized by dividing the number of
tabulated crossings per interval by the total number of zero crossings
for the 1024 point subsegment to yield an astimate of the probability
density of the zero crossing pariods., Additionally, the avarage zero
crossiay frequency was obtained from the total number of zzro crossings
tabulated.

3.3.4 Spectral Features

As previously noted, spectrograms of selected recorded audio
signals were made and examined for characleristics which ware unique
to the audible cough as contrasted with the artifacts. It was expected
that resonances caused by the various cavities in the vocal tract could

-~ .r ~ ws o~ U R
peosibly giverisc to b

road [requency peaks analogous to formants en-—
) . _ 8 ,
countered in speech recognition studies. Formant like structurgss were
not apparent, however.
Although formants were not present, information would still be
expected to be contained in a frequency domain analysis of the signal,

Several approaches to obtaining this analvsis were apparant. A Fourier

el
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= - Table 3-3

Band Limits

e bl

Zero Crossing Period

Teature
Lower Trequency* Upper I'requency®*
: Band No. Limit Limit
E | 0 16.11

— 2 16.11 32.23

3 32.23 64.45

4 64.45 1.269 x 10°

5 1.289 x 10° 2.578 x 107
o 2.576 x 107 5.150 x 10°
7 5.150 x .0” 1.031 »10°
b 1,031 » 10 2,063 % 10°
9 2.003 x106° 4.125 % 107
16 4,125 % 10"

1.3
I'equency = 1/portiod lz
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series representation or powet spactral density actimate ov 7 u sub-
segment would be candidates. An ailternative method of oblaining
similar informatior would be to r -+ .- - 0 wigital band-pass filtering on

the time varying sigral divectlyv and o then obtain the power output fron

a digital band-pass filter over sagments of time,

All o the above computations require a large number of multiplica -
tions. Techniques have been deveioped for efficient estimativ.a of the
power spectal density 7 and tecursive algorithims could be linplemented
in the case of the digital filiters, Computation time would still be grear,

however.

4
The adveat of a fast Fourier algorithm atlowed dircct caleula -

A

"‘: tion of the complzx I'owicr seirtes cocfficients of subsegments of the

; data. This algorithm ways programmed for the CDC LLOO computer. Since
4 the program follows the publishoed Cooloy =Tuckey algorithin step Ly step,

it will not e duscrined,

A 1021 paint subsegment ol dala wasb operated wn to yiceld St
(cxcluding the DC component) usable complex coellicientys . The nummbery
obtained were proportional tu, rather than cqual to, the Vourier coofficicnts
gince divisions ueceaiary o take inlo account the sampling tate and pariod

of tho gubsagmant were not poricimad; sampling rates and subsoaguient lengths
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are identical for all data processed and tha values are required for com-
parative purposes only.

Because of the large number of coefficients whish resulted from
the computations outlined above, it was neacessary to elffa<t further data
reduction. This was done by summing the squared magnitudes of the co-
efficients over bands and by extuacting information concerning paak
frequencies aud amplitude of the magnitude squared of the coeflicients
al these prak frequencics.

3.3.4.1 Youriar Fand Features

As noted above, the sguared magnitudes of the Tourier cocfficients
wer: swinmed over bands. A tolal of ninz logarithmically spaced bands
were used. Band lunits are shown in Table 3.4.

3.3.4.2 Trequency Peal Features

The squared magnitude of the T'ourier coclficients were operated
on by th envelupe detcimining algorithm desoribed in Section 3.3.2.1 of
this report W detetining the fregquencies at wwhich amplitude peaks
occuniud, Thesc naxima wige than ordered with respeet Lo maygnitude and
the twenly peaks with the gredtest magnitude were selected. A total of
cighty measures wore extactea in the furm of the magnitude of the
twenly highast peans, the twonty fiequenzices contespondang to thozn
praks and the Lequencdes on clther side of the peak frequoncroes at

which the squarced magnitude was one =fuwth of the peak valuz, In the
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Table 3-4

Fourier Coefficient

Magnitude Squared Bands

Trequency Limits

Upper
Limit

(Hz)

16

48.

b
1

W11
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128 x 107
417 x 107
995 x 107
.015 % 10°
.046 % 10°
.109 x 10°

.234 x 107
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event that less than twenty peaks were apparent, a value of zero was
assigned to the measurcs for which no peaks we.e found.

3.3.5 Measure Summary

Table 3-5lists the features which were calculated and the medasure

rumbers assigned to them,

Ul gl

3.4 Measure Selection

The algorithms outlined in Section 3.3 of this paper were

: several subsegments, each of which is represented by these 228 quantities.

used to caiculate a total ~f 228 measures, A scginent of data contains

1f the segment consisted of thirty subsegments (a not unusual occurrence),
the pattern would hove 6840 dimensions. Such a large dimensionality is
unfeasible {for 1eal time implenentation by special puipose circuitry. The

3 fast access memory reqguirements for a general purpose computer imple -
mentat.on would he sizable. It was therelore necessary to select a sub-

sct of the computed measures for use in training and classification,

e The problem, then, 15 W order the measuics in o manner which
reflects the maximain probability of corract classification or, cquivalently,
which minimizes the propablilily of w ong classification. After ordering the
measures one would choose the number of ordered measures which elther

1

allows clasgif

aldd

o~
e

cavraar oy vk by (1]
IO L0 Wialil-d dau

'
oy

allowable capacily of the machine,

R




Moasure

__Nos,

1--32

33--64

129-138

138

140-148

149-168

169-188

189-208

209-228
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Tanle 3-5

Table of Measures

Feature
Amplitude density -- least values, lowest
number
Envelope amplitude density -- least values,
lowast numher
Lnvelope difference density -- least value,
lowest number
Zero crosging period density -- lowest fre-

quency band, lowest number
Average zero crossing {requency

Magnitude squared Fourier coefficient
bands, 'owest frequency, lowest number

Normalized frequency of Fourier peaks --
highest amplitude peak, lowest number

Amplitude of Fourier peaks corresponding
to measuces 149--168

Lower quarter power {requency corresponding
lo measuwes 145-168
Upper quarter power ficquency cornresponding
to mecasures 149-168
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If the pattern is the input to a machine which depends upon
distance in some sense between patterns of differing classes to affect
recognition, onc wishes to identify those measures for which high pattern
densities in Ed of the opposing classas arc least overlapping. In terms of
the joint probability density {functlions this indicates that the chosan measurcs
should be those for which the joint probability density functions, conditioned
on class membership, exhibit the greatest difierence in valuz.

If & Bayes machine is to be implemented, it can ba shown that tha
same criterion applies. Tor the two class case, recall that the classifica~

tion surface of the Bayes machinz with a symmetric loss function is given

by
p(Dp(x|1) - pl2)pxl2) =0 (3-1)
Dafine:
R, £ [xp()p)>p@nx|2)]
L
R, = {x:p2px ) -p(p&[D)]
Assuming continuoucs prebability deneity functiong, the prob-

ability of making an erroncous decision, P, is given by cquation (3-2).
e

P = fo p(2)p(x]2) dx. ... dx
¢ R - 1 d
- | e p(x ) dx -o. d
", (3-2)
r n O
= il’(”ll(é”dxl...dx




- f.R.,Lf[p(1)p(5|1) —p(2)pfg(;|2)]dxl..idxd
!

+ fp(Z)pQ{_lZ) dx. ... dxd

oot 1
Ry
T .R..J'"l'_p(z)p(_:-m) -pMp(x [2)]dx, .. .dx,
2
r
Pe= i J PO)P(X|L) dx .. dx
1
+ fp(2)p(x|2) dx dx
Ry (3-3)
- [ 1 eIy - p2pE]2) [dx . dxg
“Aln
od

Minimization of PC implies maximization of o, definad in equation

(3-4) giver below:

é"r f‘ Ip(l)p(ﬁll) - p(2)p(x]2) ldxj...dxd

“an (3-4)
2

o

If the probability density funclions are discrete 1ather than continu-
ous, summations take the place of integrations,

Usec of (3-4) raquires knowledge of the a priort probabilitics of
occurntience and tha conditional joint density functions for sub-sets of the
measutes taken d atl o timme. Should the a priori probabilities be unknown

and unestimable, maximum likelihood classiiication is appropriate, in
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which case the quantity to be maximjzed is given by 8 , defined in

equation (3-5) given below:

It is seen that B assumes a maximum value of 2 for disjoint
classcs. Under the presumption of statistical indpendence of thz measures
T 1 3 . . . . . . .
it has been shown™ that minimization of equation (3-5) is cquivalant to

sclection of the d measures which maximize vy, definad as:

a

v=.5 J:n | px, ) - p(xi|2) | dx; (3-6)

w0

where p(xi | 1) and p(xi | 2) ars the marginal conditional densities. Some
measures with which this dissartation is concerned undoubtedly exhibit
statistical dependence. However, due Lo the impracticability of astimat-
ing the joint probability functions and uncertaintly regarding a priori
probabilities of occurrence, the relationship given in equation (3--5) was
used to selzct the sub-set of mcasures upon which training and recogni -
tion was performed.

The algorithm described in Section 3.3.1 of this paper
was applied to th? measures to estimate their marginal conditional prob-
ability density functions, The absolute values of the dificiences in

estimated probabilitics for the two classes were then summed and the

il




resulting values ordered with respect Lo magnitudea.,

in Chapter 5.

Rasults ara givan
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CHAPTER IV

PATTERN CLASSIFIER MODEL

4.1 General Considerations

Prior to describing the machine which was chosen to implement
the categorization, a brief review of the desirable propoerties of the machine
is in order.

Since we prefer that the model cnosen be adaptable to real time
implementation, simplicity from a hardware vicewpoint is a consideration,
The TLU previously described would meet this requirement, as would
circuitry which selects the maximum of secveral signals which arc weighted
sums of the input measures. Networks which realize ¢ logical switching
circuit would also be candidates. Other possible implementations would
require the storage of values in a memory of some description. While
these techniques could be implemented with relative case in a general
purpose computer program, the real time circuitry would be more complex
than would be desirable.

it has previously been noted that the use of the gencral Bayces

machine requires estimation (and subsequent storage) of p (X

i) and p(i)
for all X in L‘d, which is a formidable task. 1f, however, the measures to

be used are binary valuced and statistically independent, the Bayes machine

49




for the symmeuic loss function assumes a particularly simple form. The

derivation of the discriminant funciion for this special case is t
10
n .

aken from
Nillso

Recall that the Bayes discilininant function {fo1 the syvmmetric loss
function is gi(}i) = p{X/i)pll), or cguivalentiy with respect to the decisions
_made, gi(ﬁ) = 1n p{X/i) + Inpli), i=1,..., R. Toi the case of R = 2 and

the x statisticelly independent, we may write:
)

d . d . .
gX) =% 1In p(xi/l) +Inp(l) -T lrp (x]_/'Z) - 1n p(2)
i=1 i=]
4, 2 1n R (4-1)
=% In 57 + In =4 4-1
15177 p(x,/2) p(2)

where the x, may take on vaiues of only 0 and 1.
i

The quantities which must be estimated have been reduced to the

following:

p{x, =1/1) = .

i i
px. =0/1) =1 - p.
i i
FAY
p(x. = 1/2) = q. (4-2)
i i
p(xi::O/’z)ﬁél-qi i=1,...,d
p(l)

p(2) =1 -p()
Making use of the facu that the X, may talie on values of only 0

and 1, we may write:

N

w1t i Fil kel Kl Wi
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P(xi/l) P, - b,
In ——t-= =x1n — - . e 4-3
) xin 0 + (1 Xi} In - (4-3)
i i i
Substitution of (4-3) into {4-2) yields:
d p{l -q) d 1 - p, )
g(X) =¥ x.1n ————t 4 % ip —— 1 ln_LU_)..l-_ (1-4)
f=1 & q}.(l - Pi) i=1 1~ q; 1 - piY)
Lqguation (4-4) is of the form g(¥) = W.X' with
palo-qg)
w, = 1ln ——-— i=1, , d
i q (1 -p)
l-¢ »
d i .'H‘”
=L ln——* + 1ln —H—-— 1-§
wd*'l 11:1 n = qi 11 1 - p(0) (1-5)

Training of the machine would then consist of estimating tha valucs

ot P 4 p{l) and p(2) ond substituting thesc cstimates into the relanon-

ships given in ~quation (4-5).

If ong dees not have knowledge of the fonn of the underlying
probabiliity density functions for the :-:i, it is not possible Lo arrive at an
optimal esthnate of the requlred paraineters. Que can use, however, an

¢stimete which is "recasonable, "

Delins
Nl = Hunbot of pattens in a taibing set Lelonging Lo
class 1.
N2 @ Number of patterns i a uaining sct belonging to

class 2.

il Lot
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el

>

Number of patterns in a training set helonging to

class 1 for which xi =1,

n,_ = Number of patterns in a training set helonging Lo

| class 2 {or which x, =1,
4

Reasonable estimates for pi, qi, p(l) and p(2) are:

e ) o d
pattern classilicr, a weans must be devised to partition L and o assign

vat it o

binary values to the resuliing sub-spaces.

3 _ , ]
g Py n1,/Nl s
-3 1 : H :
Z
E. =
3 a; =1y /N,
£ .
3 () N, )
] A(1) = + -
E P Nl /(N1 , (4-0) :
£ -
E Presuming that the machine described above is to be used as a

Recall that the time sequence 1epresenting a single cough or 7 :
artifact was divided into 1024 sample sub-segments and mcasuies were
calculated for cach of these sub-segments. One way of partitioning lld ~
(In which the patierns are points) is by the use of a non-probabiiistic
pattern classifier which actls on coch sub-scygment's mcasuies individually
to artive at a tentative degiston as 1o the sub=geyment's clasys member-
ship. Since we arc interested in a two clags partition, we may assign a
Linary value to the sub~-sceyment which coniesponds to the tentative
declsion made, Par pattemns not included in the training set one would

cxpect crrors in clagsgification, 1 thege binary valued decisions are used
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as inputs to the binary valued Bayes machine previously described, we
should be able to desrease the number of wrong decisions. Our mooel,
then, assumes the form of a layered machine, the first layer being trained
by a non-probabilistic algorithry while training for the finai layer is
probabilistic in form. The {irst layer will be called the fist stage of the
pattern classifier and the s :cond layer will be designated as the second
stage.

4.2 Non-Probabilistic Patlern Classifier First Stage

The machines examined for use as the {iist stage were themsclves
layered machines. Recall thatl a layercd machine implements a piccewisc-
linear discriminant function,

The lirst banks of a layeted macaine may be thought of as a device
which performe a mapping from patiern space to an image spacce, Consider
thc case where patterns are not lincarly scparable in pat'ern space. It
can be shown that for a particular iaining sct a {irst layer may be 1ound
so that the mapped patteins In decision space ore lincarly sepaz’al'-le.]

For the special case of R = 2 the first bank consists of a numper of TLU's
connccted in parallel. Training invelves determining @ 2 number of TLU's
required and the weights associated with cach TLU, The sccond bank,
consisting of a single TLU, which has as inputs the outputs of the first
bank TLU's, is traincd so that its outpul indicates the correct [CSponse

for all patterns in the treining sct.
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A linear partition of pattern space is formed by positioning hyper-
planes in the space so that the space is divided into cells such that no
two patterns of opposite categorization reside in the same cell, A non-
reaundant partition is defined as a partition with the property that if any
orre of the partitioning hyperplanes is removed, at lcast two non-empty
cells will merg. into one cell.,

4.2.,1 Paralle] Hypuerplane First Stage Implementation

Given I hyperplanes which form a non-redundant partition of two
finite subsets of patterns vectors, a sufficient condition that the sets
mapped into image space be linearly separable is that exactly P+ 1 cells
formed by the partition be occupied by patlteins .10 A partition of pattern
space by P parallel hyperplanes fulfiils this suff;cicncy conditicn.

The equation of a hyperplane may be written:

CX=z (4-7)

Given the hyperplane described by equation (4-7) in Ild (C # 0},
it may be stated that C is a vector normal Lo the hyperglane. Any veclor

kC is also nonmnal to the hyperplane (k # 0). Tnec two vectors of unit

length C/| C

, —C/ ] c l arc the unit normals to the hyperplane.
|z |/1C | 1s the distance of the hyperplane from the origin.” Two hyper-
planes are parallel if they have the same unit normal,

We iay foim a non-redundant paridiion of patiern spacc with

parallel hyperplancs by the implementation of the following algorithm:




s

1) Select a unit normal vector, N

2) Form the det product of patterns in the training set with the
unit normal,

3) Armrrange the dot products obtained in step 2) in order of value,
largest first,

4) Scan the ordered dot products to find adjacent products that

| belong to different classes, Let these dot products (which

are distances from the origin along the unit normal) be

designated as d(i) and d(i + 1).

~-5) Place a partitioning hyperplanc perpendiculir to the unit

normal at a distance from the origin in the direction the unit
unit normal of:

z, = [d(i) +di +1)]/2
6) Repeat steps 4) and 5) until all the adjacent dot products of
differing class have been found.

I.et P be the total number
of partitioning hyperplancs.

In terms ot discriminant function we may write;

gig) = (—1)k+1 [(N-X-2z]

(4-8)
i=1, ..., P
ko0 if the vector associated with
d{1) belongs to class 2

[

if the vector associated with

d(1) belongs to class 1

55
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It is seen that the first layer of our machine may be implemented by
P TLU's, Training consists of finding the zi in equation (4-8) and is non-
piobabilistic in form.

Definc:

<
[l

1 ir gi(ﬁ) > 0 (4-9)

-1 if gi(g) <0
i=1, ..., P
The vector Y, which is the output of the first layer, is the input
to the single TLU which comprises the sccond layer of the machine. Since
the P hyperplanes have formed a nen-redundant partition of pattern space
with exactly P + 1 cells occupied, the vzctors ¥ in the training set are
linearly separable and the discriminant function which performs the
separation may be written:
9 =W.Y+ wy (4-10)
g(Y) » 0 = Xe class 1
g(Y) < 0 = Xe class 2

It can be shown that a W' which satisfies cquation (4-10) is

given by:
Wi =1 i=1, 2, , d
Wi =0 P odd (4-11;
k+]
= {-1) P even

where k is as defined in (4-8).

B AT S TN

Mt ikt 1)




)R B SR R A M

E
=
M
=
H
£
£
H
z
T
H

s

57

It is interesting to note that for P odd the discriminant function for
the second layer TLU impleinents a majority logic decision.

If the parallel hyperplane partition approach to the layered machine
is used, it is necessary to determine an efficient means for choosing a
unit normal vector. It would be desirable to poesition the unit normal
vector so that the projections of the training vectors on the normal vector
are close together for patterns belonging to the same class and far apart
for patterns belonging to different classes.

It is possible to obtain such a vector analytically if the under-

lying probability density functions are known. The “discriminant analysis

—--technique used in classical statistics does this for vecters from popula-

tions with normal distributions and equal variances.

Under certain assumptions regarding the nature of the data (for
example, unimodality of the underlying probability dengity functionsg)

. 13
such a vector may be estimated from experimentally gathered points

However, no matter what method is used to arrive at the unit normal

, the method has inherent shortcomings., One may visu

vector

[o}]

lize any
number of cases where this technigue would fail to separate even dis-
joint classes. This failure may be traced io the fact that multidimen-
siunal data is effectively being reduced to a sing’'e dimension in patiern

space with an accompanying loss of information.
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Despite the obvious drawbacks the algorithm is attractive becausc
of its simplicity and the assurence that a given training set may be

separataed by iinear surfeces. Prelininary preprocessing of the data

indicated that the underlying probability density functions were not unimodal.

No ecffort was made, therefore, to obtain a unit normal vector with the
desirable properties ennumerated above. The algorithm was programmed,
however, using the difference of the means of the patterns in the two
classcs as the normal vector. The results are ennumzcrated in Chapter §
of this report.
4.2.2 Minimum Distance First Stage Implementation

An alternate means of effecting the-reguired partition of Ed
(pattern space) takes advantage of the greater "similarity" of patterns
which are members of one class as contrasted to patterns which are mem-
bers of the other class.,

For thg purposcs of this dissertation we shall define similarity
in terms of the luclidian distance between points.

Define:

2

A
d(X, Bi) =S - Bi)'(ﬁ - Pi)J ’
which is the Cuclidian distance between X and Ri' If d(X, Bi) <
d(x, Bi) we shali say that X is more similar to Bi than to Ej .

1f the P. are prototype points as defined in the section of the
4

dissertation dealing with the minimum distance classifier with respect

|
bl
|
|

4. b sl
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to point sets, a similarity decision may be made ucing the discriminant

functions described by equation (2~17), repeated below for convenience:
9,00 = X-I, - ¥D B, (2-17)
Since (2-17) set equal o 0 defincs a hyperplane, a linear partition of

d .
z E™ has been formed. There is nc reason to cxpect that the partition

effected is non-redundant, however, if i > 2, If the P, are colinear the
1

partitioning hyperplanes are parallel and the situation is as outlined in
Scction 4.2.1. 1If the Bi are not colinear, more than a single dimension
is required to define the decision regicns. We may logically expect,
- —... therefore, that we have preserved more of the information contained in
i(.he original measures than in the colinear casc.

Suppose thai our situation is as described {or the minimum

distance classifier and that we may therefore utilize equation (2-19)

" as a discriminant function to oblain the binary representation of the sub-

segment pattern reqguired as the output of the pattern classifier first

‘stage. Alternztively, we may form linear discriminant functions for

- each pair of _Ri from differing classes and obtain a vector ' ~a  repre-—

senlation of the pattern, that iz, effect a mapping from , -, <.n space

to a binary valued imagec space. Such a mapping may be accomplished

by a bank of TLU's. If m of the _P_j arc prototype points from class 1 and

n of the E'i are prototype points from class 2, a total of m x n TLU's will

bl e

be required. A binary logic network with the first bank TLU outputs as

N
1
.,,W‘\
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inputs may be designed which will implement a decision identical to that
obtained by the use of the discriminant functions described by equation
(2-19). In either case the decision surfaces in paltern gpace ate
piecewise lincar. The binary logic network may possibly (but not

necessarily) be implemented by layered TLU's.

The foregoing discussion has presumed the existence of similarity
or clustering., For the data with which this vavwer is concerned,
this presumption appears to be valid. Training for the first stage of the
pattern clasgifier consists of the determination of the Ei which will be
usad as prototype patterns for the minimum distance classifier.

We have defined similarity in terns of closeness of points in the

. ol 00 OIS0 oA

sense of Euclidian distance. A reasonable method for determination of

wirwithiline

the prototype points is to determine the centroid of points which show the
greatest similarity. This requires that we find the regions in pattern space
in which the patterns cluster.

Two b.usic approaches to the solution of this protlem are evident.
Onc approach is to & priodd specify ihe boundaries of a cluster relative to
the centroid. Training then consists of locating the prototype points 5o
that all, or most, of the training patterns are contained in one of the
clusters,

A second approach is to place an upber bound on the number of

clusters which will be considered. Arbitrary vectors are assigned as a
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first approximation Lo the centrolds of the assumed clusters and training is
completed by adjusting the centroids by ths application of an iterative
algorithm.

If the first approach is chosen, the cluster boundaries will define
oiiner hvperspheres or hyperellipsoids depending upon whether the assumed
distance of the Youndaries from the centroid arc cqual in all directions or
are ditferent along the COMpPONeNt axes, In either case a preliminary
examination of the data will be necessary to determine the distances Lo
be used.

Algorithms implementing both of the above described opproaches

~were programmed,  Descriptions are given in Chapter 5.

1 4.2.3 Summary of I'lrst Stage Characteristics

At this point a bricf summary concerning the structure of the first

stage of the pattern classifier is {n order.

The first structure consiaciod was o layered machine, the first
bank of which consisted of TLU's whose hyperplanc declsion suifaces
weore parallel,. It was showrn that the orfentation of the hyperplane defined
by the cecond layer TLU i {ixed while fts distance from the origin ig
dependaent only upon whether the aumber of ficgt bank 15.U's {5 odd o1 ¢cven
and, lf the number of the first bank TLU's is cven, on the class member-

ship of the toflning pattern which iy furtherest fiom the origin,
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Binary representations of the pattern, X, arc available as the output

of the {irst layer TLU's and as the output of the second layer TLU's. It was

noted that a given set of patterns could be separated by this structure, but

that cecond layer decision errors would be expected for patterns not in-

cluded in the training set.

The scoond struciure considercd was a minimum distance c¢lassifier

with respect (o point sets. Training for this structure consisted of

estimating the prototype patterns., It was noted that two implementations

win

of the minimum distance classifier were possible. The first utilized the
discriminant function given as equation (2-19) while the second consisted

of a first bank of TLU's fceding a binary switching circuit, The decisions

PSP TN A

reached by the first stage were identical for the Llwo structurcs.

T )

Tor both th¢ minimum distance and parallel hypeiplanc classificrs,
then, two binacry representations of a patiern subsegment are avatlable. -
The first is @ binary vaelucd vector which has as elemaents the output of
a {i1st bank of TLU's. The sccond representation i3 a single binary value

FR— . .- 1 z ’
1181 stage ucotision,

These binary representations are the input to the probabilistic
scceond stage of the pattern classificr.

4.3 Tattern Clessifict Probabilistic Sacend Stage

4.3.1 Statistically Independent Measurcs Model

To this point we have been concerned with the ordered set of measures
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obtained from a single 1024 sample subsegment of the original digitized

data. Define ;{_(”

as a first stage binary representation of the jth subsag~
raent. Suppocse a segment contains k subsegments. Define:

P O I R I

Utilizing the logarithmic form of the Bayes di<criminant function
0
for the syrmmetric loss function with R = 2 and assuming tha _);(J’ statisti-
cally indpendent, we may write:
ko, ey pW
g{2) = % 4n O + 4n (2)
1=1 p(X""|2) P

1f the elements of }F(()) are assumed Lo be statistically independent

the following relation applies:

(4)
k d px, "' |1) \
g{z) =% 3 4n ———-1-(__—)—-—-" 4+ 4n 5‘(8“)2— (4-172)
j=1i=1 p(xi} |2)
Daofine the subsidiary discriminant functions:
() d p(xi()) B
¢ w=r o — ;
is (4-13)

1 p(xi(j) I 2)

Lguation {4-13) ic of the form of equation {(4-1) with p(l) = p(2)
(maximuru likelihood discriminant).
Substituting (4-13) into (4=12) yields:

L6 ~p(l) \
g(2) —J@lg (X) 4 4n o) (4-14)
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Extending the nomenclature previously used to define the various
probabitities, we define:;
j A
px W =1y, O
i i
A ‘
ate =0l 81 - p O
i
G) _ B
Plx, ™" =112) =q;
£ A s
i i
hen: .
then B () g )
D S B
q " (1~ P, )
{(4-15)
g (1 - pj(J))
+i‘ in —‘—(—)'—
=g - g, ")

Substitution of (4-15) into (4~14) yields:

N .
L g pl,(1,(1_(11()))
glZ) =% % x n —————————
= =1 =] ! “ (J)(l—t\ (J)‘
ﬂi \ ti l
(4-16)
(J)
k d (1 -p"")
4% % 4n —'—‘L(T + 4n R(%)
§=1 i=1 (1 - qu) pic

d = dimension of X
k = Nou., subsegmenty

Equation (4-16) is of the fonn:

hacuisal | b

bt

Jad b thibtui

i \‘\i\

bt vie 1
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: 9@) = W.Z+w,, (4-17) ]
Ei W and 2 4 dimenslional
L=dxk
where . )
YT Y T RN
m ixdt+i . ] (1 p. ) )
E 1
=1, S _
i=1, , d
(4-18)
m=1, 2, . 4 :
) L=dxk n :
X d (0 -p J)
w = g, - 1 + n 1
LhL ) =) (0 _())) 1 -p(l)
- o L O
Training then consists of zstimating the pi © 9 and p(l),

i=1,...,¢d:ij=1, .., ., k).
"4.3.2 Markolfl Distributed Measures

The presumption of statistical indpendence invoked in Saction
4.3.1 was justified on the basis of computational maneg abiliity. If the
elements of the binary valued veclor represent time sequential first stage
dec'isions, a possibly hetter assumption is that the measurzes comprise a

z Markoff chain.

The genaial logarithmic form of tha two class symmetric loss Bayes

disciminant function is repeated below;




66

)
g(X) = 4n p(ﬁl 1) - 4n p(glz) + tn 5‘8—; {(4-19)
px 10 =pG, %, oo x |9 (4-20)

i=1,72
k = number of sequential first stage decisions

If (x,, X0 xk) is a Markoff chain, by defini‘u‘onll

1 2

pix. |x,_ P 3,) = p(x. ‘x._ )

i i-l i-2 3 i1 (4-21)
i=2, 3, , k
Then, by the definition of conditional probability:

p(xk, Ky ye e X p(xk ka—1>p(xk—1 EONPYRRE ’Xl)

= ) -
p(xklxk_l) p(xk_l I Xy o’ P(Xk_z, . >\1)

. .
’ v . v = # - ’_ P 4_
Plx. %, ) x)=px ), e lx ) (4-22)

Substitution of (4-22) into equatian (4-19) vields:

pix, 1)k ple 11, %))
X) = 4n - + X 4in
9% p(x1 2) i=2 : p(xilzl Xi_,')
) (4-23)
+ 4n B
1 - p(l)

Recall thet X may take on values of only 1 and 0. Delinc:
A
Plq= 1 | 1) = p

plx. =111, x, ., =1)

jre)
e
I
—
—
X
i
<
A

1

st |

o R g
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A 0
P(X1: 1 | 2) =q (4-24) :

plx; =1 |2,xi_l=l) ;

1[2,){1_1 —-j

)
%
I
11
&
|
<

i
—
Z
>
—
!
-

p()‘::,l 0 I 2, xi_

1

A
p(xi~0 l 2.).1,_1—0)— 1 - vy

Making use of the fact that X =0or Xi:l we may write:

p(xl,ll)

B Py

L-r, l-s,
-x_ ] — - 1
+ Q1 X, [xi_l in — + U Xl—l) n

1-v.
i

si(].—v‘,)
=y 4n — -t
®p Mo v.(1-5) i
i i

rv (1-t)(1-s))
+ XX Ln L L :
i7i-1 tisi(l—ri)(l—vi) :
(L-r ) (1-v.) (4-25)
1 1
+ X, in

i-1 (]—ti)(l'Si)

NTINIIR

-
111 e
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Also: I
p{x. [1)
. 1 - J I 1% ) 4 .Q.:EL
in p(xl %) >\J in 5 + { xl) n (1-q)
{4-26)
= xy tn p(l-q). + 4n Lﬂ
L™ gq(1-p) (1-q)

Substitution of equations (4-25) and (4-25) into equation (4-23)

yields:
B K bi(l—v,)
9 =x, in 28—3_ RN vi(1~slj)
K rivi(J —tl,) (1 hsj)
RS B ts, (=) (1-v)
K . (1-r)(1-v)) ko ifsi
+i§2Xi-l n (l"ti)(l"si) +l'=y\'2 o l—vi

1-p ., p()

+ 4n 1-g + 4n L-p(1)

If k is fixed, equation (4-27) may he witten as:

PL=g) (i-5 ) (1-v,)

- - — )]
s;0-v) ry )0 vy )

k-1 "
+ T X
i=7 ! -5 -t -
1=2 villms )=t Pl=sg )
sk(l-vk)
+ %, in TR
: k k

(cquation cont'd on next page)
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" I, vy (l—ti)(l—si)
+ T X, X, in -
j=p 1 71-1 t, s, (1 ri)(l Vi)
k (1—51) 1- p(l)
+ T in ——— +4n - 4 &n (4-28)
j=2 \1_V) l'q l—p(l)
i
Fquation (4-28) is of the fonn:
£i vy X i A & I}«’\ At s
9y =W R F AT Yy {4-29)
where:
P. (X) = %, x, =2, ..., k (4-30)
¥j-1 (%) joi-l )
@ X =0
- Since x is binary valued:
- x x . =0 forx #x . #1
j-1 J j-1
(4-31)
xj Xj—1:1 f,orxj=xj_l=1

Equation (4-31)may be implemented by a TLU: equation (4-29) may

therefore be implimented by a layered machine., Since a layered machine

itnplements a piecewise linear discriminant function, g{X) in eguation

{2 LY R Y [ iy i
(%3 L)

i TimAa e T +
13 PICCOCWILIDU  Lili-udl 4l v

Tev wam i A iy nnd an h
his rcalization is used as the

sccond
stage of a pattern classifier for which the first stage is piecewise linear
(for exampie the first sia,e described in Saoction 4.2 of this paper) .

the composite machine is piecewise linear.

Training for the Markoff machine consists of estimating the

guantitics defined in (4-24).
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Define;
P = Numbar of class 1 training patterns for which

xlzl.

R. = Number of class 1 training patterns for which

x., =1 and x. =1; 1 2,3, ...,m,
i i-1

S. = Number of class 1 training patterns for whici

., m.

»., =1 and x,
i

Q = Number of class 2 training patterns for which

T = Number of class 2 training patterns for which

x =landx, =1;i=2,3, ..., m.
1 i-1

V. = Number of class 2 training patterns for which

x. =1 and x. =0;,1=2,3, ..., m.
i i-1]

Nlj = Number of class 1 training pattarns having

at least j components (assuming that the

patterns can have a varying numbear of com-

/
2, ..., m, (4-32)

nonantg): 1 = 1
ponent s} ) i,

2 = Number of class 2 training patterns having
at least j components; j =1, 2,

N
S
. = Number of class 1 training patterns for which

Mll

xi—l =1;1i

a i g KECTIN A K]
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M?i = Number of class 2 training patterns for which

X, =1,1i=2,3, ..., m.
i-1

= Minimum of the maximum number of components in
class 1 training patterns or class 2 tiaining
patterns,

Rcasonable estimates for the quantities desined in (4-24) are:

= P = j/
p I/Nll q (*/Nzl
r; = R/My; t =T .,/M_.

1 1 21

(4-33)
, =S /(N. -M _, .=V /0 -M
s, 1_/( L 11) v, 1/(\121_ 21)
i=2, 3, . ., m

If k, the number of components in a pattern, is fixed, equation

(4- 28) may be used as the recognition discriminant function. If k is

variable from pattern to pattern it is necessary to use eqguation (4-27) to

ey

efiect recognition since it is not possible to compute the constant term
until the dimensionality of the pattern is known.

4.4 Composita Machina Structure

Racall that the first stage of the pattern classifier described in
Secction 4,2 maps the pattern intoa binaryraprescentation. These binary
: values may be either 0 or 1 or +1 and -1, depending upon the representa-

tion requircd for the succezding stage.

Figure 4-1 is a block diagramof the patiern classifiers implemented,

e [ITr—

TR T e

I I AV AT R e T
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(i) , .. , . )
) is a vector consistinag of d real valwec neasures

Referring to this figure, 2
There are a total of k subscgments in a

{or the ith subsegment in a pattern.
pattern. Z is therefore = dxk dimensional vector which represants a complete

pattern,
Assume that the first stage of the first layer of the pattern classi-
T : .y (i) . o .
fier consists of p TIiI's. Y 7 is < vinary valued p dimensional vector
representing the ith subseament of the pattern. V is the first stage--

first layar binary representation of o total patterr and consists of pxk

ordered binary values.
The nutput of the sccond layer of the {irst stage of the pattern

which represents the pre-

L,
1

___classifier is a binary valued scalar
liminary decision made by the first stage of the pattern classifier as
is a k

g

te the classification of the ith subsecgmeni of a pattern..

dinens.cnal binary valued vecior which repnesents the preliminary

cequential classification decision. of the first stage of the pattern

cITrors

clasgiflier for a complete pattern.
Regardless of the Jorin that the pattern classifier takes
It is logical to ¢ ssumc that an

in classification arc to he cpected.
~increase v the complexity of the machiae chosen would he raflected in

a lowering of the probabill’ - of crroncous classification,
The differences

Five sccond stage classifierz were implemented.

1in machine complaxity will be apparent from the desceriptions of the
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machines. 7The structures of tha machines follow from tha presumption
made concerning the statistical properties of the {first staga binary vectors.
These presumptions are outlined 1n the sactions of this chaptar of the
dissertation which follow.
4.4.1 Machine Number 1

Referring to Figure 4-1, machine number 1 operated on U, the
first stage-~second laycer output. This implemantation was made under
the assumption that the uj's were statistically independent and identically
distiibuted for i =1, 2, ..., k. The applicable discriminant function
is given below as equation (4-24):

p(l-q) 1-p pQ)
+ koL T
g(1-p) I-g  1-p(1)

k
gl(g) = u, in
=1 (4-34)
p and g were estimaled from a training subscl without regard to subseg-
ment nwnbet. It 1s secn that only three valucs must be stored for the
secord stage classifier,
14.4.2 Machine Number 2
eferring to Tigure 4-1, machine number 2 oparated on ¥V, the
firct stage--frrst bank binary representation. This implementation was
made under the pregsuinplion that the yj s wore statistically independent
overj =1, 2, ..., pand identically dirtributed fori=1, 2, ..., k. The

applicable discriminant function is given below as equation (4~35);




TR

x
£

(4-35)

(1-p,)
+ k rﬁz in 24—+ 4n pl)_
' a) 1-p(1)

The pj and qj were estimated from a training subsetl without regard to sub-
segment number,
4.4.3 Machine Number 3
Referring to figure 4-1, machine number 3 operated on U, the
first stage-second layer oulput. This implementation was made under
the assumption that the ui's were statistically independent, hut not
necessarily identically distributed tor i =1, 2, ..., k. The applicable

discriininant function is given below as cquation (4-306):

k p, (1 "ql.) Kk (1 —pj)
Ul=L u. 4n ———— + £ ¢
930 =i q,(1=-p) =1 " -q)

) pil)y
t 4n 1~p(J)

The pi and ql, were estimated from a training subset using only the ith
subscgments Lo estimate ‘Di and qi'
4.4.4 Machine Numbcr 4
Referring to 'igure 4-1, machine number 4 operated on V, the
first stage--first bank binary represcentation. This implementation was

) j
made under the presumption that the yj )'s. were statistically independent
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fori=1,2, ..., k;3=1, 2, ..., p, but not necessarily identically

PRI TR T IR PR T TN

distributed overi. The applicable discriminant function is given below

as equation (4-37):

: (i) (i)
! k . (1‘ . )
; _o P (1) i j
Wv)y=%2 & ) 4 - -
| 9,0 =5 j:l[yl " qj(l)“"pj(l))
4-37
(1-p. V) v
+4in  ————I+ an 2
(i) 1-p(1)
(l—qj )

(1)

(i . 4 .
pj and qj ) werce estimated using only jth first bank TLU output for the
ith subsegment in the training subset.

4.4.5 Machina Number 5

Machine number 5 is identical to machine number 3 except it was

assumad that the ui's were Markofl 1 distributed rather than heing statisti~

cally independent. The applicable discriminant funclion is given below as

equation (4-38):
p(l—q)(l—rz)(lcvz)

9 (U) =u, in

1 (1~ 1= 1-
gl -p)( tz)( SZ)
s };: 1 . 51(] _Vi) (lnri+ 1) (1 _Vi+l)
NP JT: - -5
jmp i Vi( 'si)(] ti”)(J bi'll)
o o) (4-38)

+ u 4in ———
k v, (]—b'()

“

{cquation continued on nexi page)
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k riv.(l—t,)(l—s_)
I 0 Y e tsl(l— 1)(1- 1)
i=g 1 i 5,1y v
k (1-s)
i 1-p pll)
-4 £
* i}izén (1-v) +An 1-g o 1-p(1)

1
The various probabilities were estimated by use of the relationships

given in (4-32) and {4-33) with respect to u.




CHAPTLER V

RESULTS

5.1 Data Processed
As outlined in section 3.2 of this report, data processed was

from one of two categories. These categories were:

Category one —-- data recorded at Woodlawn Hospital
Category two ~- simulated coughs and artifacts recorded at

The University of Texas at Austin.

Category one data was taken from recordings made without benefit
of the start-stcop recording procedurc outlined in section 3,2.1. Rather,
the original audio tape recording was edited and re-recorded prior to
digitization. Included in this type of data were forty-one cough segments
(patterns) which contained a total of 444 sub-segments and twenty-eight
artifact segments which contained a total of 342 sub-segments (a total of
sixty-nine segments and 786 sub-segments).

Category two data included 112 cough segments, which contained
450 sub-segments and twenty-eight artifact segments which contained
850 sub-segments, : total of 140 segments and 1350 sub-segments.

When category onc data was uscd for training, it was possible to
estimate the a priori probability of occurrence of the cough and artifact

classes. In the case of category two data, such an estimation was not

78
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possible, since the true relative number of occurrences of cough and
artifact patterns was not preserved, The a priori probabilities for this
latter casas were set equal, which resulted in maximum likelihood decisions
rather than Bayesian decisions.

The discrepancy between the lengths of the category one and
category two data signals was due to the recording techniques employed.
The background noise¢ in category one data tended to make the coughs
longer since the individual "hacks" which constituted a cough serics
were placed in the same segment in many cases. The calegory two arti-
fact segments tend to contain many sub-segments because they were
recorded from continuous commerical recording signals,

The differing lengths of signal did not have a significant effect
cn training and classification results, however, since it was required
that suflicient numbers of sub-segments be available {from both the cough
and artifact classes to obtain reasonable estimates of the probabilities
involved. During the classification phase, sub-scgments in excess of
this number were ignored.

5,2 Mueuasure Calculation

Measures were calculated by the procedures outlined in section 3.3
of this paper.

Computation of the measurcs for a 1024 point sub-scgment required
approximately 0.8 sccond, of which approximately 0.7 sccond was expended

on calculation of the Pourier series coefficients. The measurc numbers to

kil
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which references are made in the discussion which {ollows are listed in
Table 5-3.

Prior to utilization of measure number 139 (average zero-crossing
frequency) and measures 140 through 228 (spectral analysis measuras),
it was necessary to normalize the calculated values so that the resultant
measures had a nominal maximum value of one. Tailure to effect this
normalization would tend to place emphasis on those measures with the
largest magnitude.

The empirical normalizing relationships used were as {ollows

(v is the calculated value of tho measure):

Measure No. 139 (average zero-crossing frequency) "‘(lOQlOV)/IBSOO
Measure Nos. 140-148 (magnitude squared Fcurier coefficient
bands) - 8.33 x 10_3 loglov
Mecasure Nos. 149-168 (frequency at which spectral neakes occurred)
and mecasurc Nos., 189-228 {(specciral pecak 1/4 power frequencics) -
0.025 long
Measure Nos. 169+188 (magnitude squared of spectral pecaks) -

0.01 IUgLOV .

5.3 Mcecaswe Solection Results
The procedure outlined in section 3.4 was applied to category one
IS it ~ 4 o of 2 4 ~

data and category ltwo data separately. Table 5-1 is a list of the results

obtained for the fifty highest ranked measuraes for category one data and

i, s D

PR b
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Table 5-2 for category two data. The criterion value in columns three and
©

six of the tables is an estimate of {‘ Ip{v/1) -p{v/2) |dv where p(v/1) and
:-cn

p(v/2) are the marignal probability functions conditioned on the measure

v having nriginated from a signal belonging to the cough and artifact

classes respectively. The measure numbers in columns two and four are

identified in Table 3-5. It will be noted that a maximum possible criterion

value of 2.0 would indicate that the classes were disjoint with respect to

that particular measure.

The measures listed in Table 5-1 will,.be referred to as "measure
set A" The measures listed in Table 5-2 will be rcferred to as "measure
set C." The [irst twenty-five of the measures listed in Table 5-2 will be
referred to as "measure set D"

RBecause category one data contained considerable noise, it would
be expected that the spectral features would be masked Lo somec exient,
This conclusion is verified by the {eature selection results. For this group
of data, the featurcs emphasized are the envelope difference and zero-
crossing features, while the spociral fcaturcs arc almost entiiely excluded.

In the case of category two data, for which the signal was relatively
clean, specctral features predominate as those most likely to aid in recogni-
tion. The amplitude density and envelope amplitude density [ealurcs are
also stresscd.

The estimated absolute diiference in marginal densities indicates

that recognition error rates should be considerably lower than those for
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Table 5-1
Measure 3election Roesults
Category One Data ;
Feature Criterion Feature Criterion :
Rank Number _Value Rank Number Value
1 209 0.727 18 191 0.377
2 149 0.721 19 12 0,377
3 169 0.701 20 151 0.374
4 138 0.672 21 94 0.364
5 48 0.640 22 137 0.363
6 1335 0.626 23 162 0.362
7 136 0.622 24 106 0.360
8 97 0.466 25 40 0.359 :
9 92 0.466 26 87 0.356
10 144 0.451 27 93 0.348
11 47 0,447 28 105 0.345
12 49 0.414 29 18 0.333
13 46 0,392 30 218 0.333
14 96 0.387 31 104 0.332
: 15 211 C,380 32 17 0.329
|
1 16 103 0.384 33 158 0.327
17 90 0.384 34 107 0.324 3
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Feature Criterion
Rank Number Value
35 198 0.321
36 10 0.317
37 139 0.314
38 100 - 0.314
39 85 0.310
40 50 G.310
41 44 0.305
42 91 0.301
43 11 0.300
44 99 0.299
45 Sl 0.296
46 88 0.291
47 24 0.289
48 95 0.283
49 108 0.283
S0 45 0.282

Fhts

el Mt 1111
. m
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g Table 5-2
; Measure Selection Results %
Category Two Data :
I Feature Criterion Yeature Criterion :
Rank Number Value Rank Number value

1 11 1.124 18 176 0.920

2 12 1.105 19 173 0.913

3 17 1.099 20 20 0.913

4 16 1.070 21 48 0.911

5 21 1.068 22 175 0.911

6 22 1,048 23 174 0.90¢8

7 10 1.007 24 179 0.903

8 43 0.984 25 23 0.897.

9 148 0.942 26 170 0.896

10 177 0.940 27 186 0.892

11 13 0.938 28 146 0,889

] 12 178 0.938 29 185 0.889

13 171 0.936 30 184 0.887

14 147 0.933 31 180 0.883

15 142 0.927 32 181 0.879

16 169 0.927 33 187 0.877

17 172 0.925 34 183 0.877

3
l
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188

182

9

144

189
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0.
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Value

868

860
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. 836

.825

. 802

. 800

.791

.79

. 721

.703

.702

.684
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category one data. Resulis presented in section 5.5 show that such is

indecd the case.

i

An additional set of measures was sciected on the basis of siimplicity
of implementation of the pattern classifier by special purpose circuitry.
Zero-crossing measwies and envelope difference measures were promising
candidates in the light of the measure  seclection results for category one
data. The twenty-cight measures chosen were measures nuinber 8% through

e

198 and mcasure numbers 135 through 138. These measures will he referred
1o as "moeasure set B
5.4 Training Set Sclaction !
The {itcl stage of the pattern classifier was trained without regard
to the location of a sub-segment within a scgment. The second stage of

the ¢lassilion, on the other hand, ook the order in which the sub-segments

occur into accuunt. Two tynhes of training c.assces were therefore required;

the first consisted of unordered sub-segmentis and the sccond of complete ‘
segments {patteras). ,
Training and classification were made for cach of the two calegories
of data scparately. A sct of trainirg patterns was thercfore chosen {rom I
cach of the categorics,
The ymoccaure used {or selecting the training sets is given below:
1) A specitied poercentage of the patterns (scgieents) belonging

to cach of the classes (artifact and cough) were selected at
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random. These constituted th- training set and were used to
train the second stage of the pattern classifier.

2) A specified percentage of the sub-segments contained in each

of the patierns selected in 1) were chosen at random to form
a training sub-sect. This sub-sct of training sub-segments
was used fo! training the first stage of the pattern classifier.

The relative frequency of occurrence of coughs and artifacts is
preserved by the above training set selection, Use of the training sct to
eslimate a priori probability of nccurrence is therefore valid (for category
one data).

Seventy—five per cant of the available catcgory onc patterns were
selected for the training set. This set consisted of thirty-one cough
patterns and twenty-onec artifact patterns, a tofai of {ifiy-two patterns
(out of an available sixty-nine).

Tifiy per cent of the sub-segments {tomn each of the training patterns

weare selected for the training sub-set. The sub-set consisted of 164

cough sub-scgnmeénts and 132 artifact sub-segments, a total of 296 sub-
segments.,

The category two data training set consisted of fifly per cent of
the available patteins. The scet contained fifty-five cough patterns and
fovrtleen artifact patteins, a total of sixty-nine patierns,

The training sub-sct for category two data was made up of 50%

of the sub-scgmentis from cach of the iraining patteins - 108 cough
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sub-segments and 206 artifact sub-segments, a total of 314 sub-segments.

5.5 Machine Training and Classification Results

Training and recognition using calegory onc data were accomplished

for four first stage .onfigurations used in conjunction with four second stage
conligurations; the Markoff-l machine was not implemented. Training and
recognition using category two data were conducted for the first stage con-
figuration chosen as a final first stage and for all five second stage
configurations. The second stage implementations were as described in
scctions 4,4,1 through 4.4.5.
The first stage configurations utilized are listed below:
1) Parallel hypcrplane implementation (as described in
scction 4.2.1).
2) Modified parallel hyperplane implementation
3) Minimum distance with respect to point sels configuration
with pre-set cluster boundaries (described in section 4.2.2)
4) Minimum distance with respect to point sets configuration

with houndaries determined by aniterative algorithin (described

in secticn 4.2.2).

The first stage configuration listed as 4) above was chosen as
a final first stage for the pattern classifier.
Training and rccognition tesults are tabulated in Tables 6-3

through 5-14, The following abbreviations were used:
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21 A —---- Artifact Class
% C ---- Cough Class
B/D -- a deccision was made that the pattern belonged to

AEREUT (AT (AT

class B when in actuality it was a member of class D.

wdt

B=A,C; D=A,C

The data identification and measure sct nomenclature previously

defined are repeated below for convenience;

Category one data —-- recorded at Woodlawn Hospital

Catcgory two data --- simulated coughs and artifacts

Measure set A -~-~ the iifty measures described in Table 5-1
Measure set B --- the twenty-eight measures described

DN - [ L b Y St B O A - i ¢

in the last paragraph of section 5.3

At

Measure set C --- the {ifty mecasures described in Table 5-2
Mecasure set D ~---the first twenty-{five measures described

in Table 5-2.

"

5.5.1 Preliminary Configuration Results

e

Tables 5-3 and 5-4 are tabulations of the training and pattern
classification results for the parallel hyperplane first stage configuration.
For rcasons which were previously outlined, it was not expected that this
configuration should perfurm well for patterns not included in the training
sct, The tabulation of the {irst stage=-sccond layer decisions for sub-

scgments (excluding the training sub-set) indicates that this was the case.

L
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Pattern Classificr Results
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Parallel Hyperplane First Stage Implementation

Category One Data -- Measura Set A

Measure Set A (50 measures category onc data)

Number of Tirst Stage Hypcrplanes --109

First stage - second layer decisions:

Excluding

Training sub-set

Training sub-set

Total

Cczond stage decisions:

Machine No.

ISR R

=

S W

W N

C/C A/C C/A A/N
166 114 101 109
164 0 0 132
330 114 101 241
C/C A/C C/h MM
10 0 6 |
7 3 5 2
g 1 3 4
7 3 3 4
30 1 5 16
28 3 12 9
30 1 0 21
28 3 5 16
40 1 i1 17
35 6 17 11
39 2 3 25
35 G 8 20

Patlerns
Considered

Exc. training sel
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1.ble 5-4

Pattern Classifier Results
Parallel Hyperplanc First Staye Implementation

Catcgory Cne Data -~ Maasure Set B

Number of First Stage Hyperplani.s == 111

Tirst stage - seccond 'ayer decisions:

c/C. AC_ C/A AN D
Excluding 200 80 109 101
Training sub-set
Training sub-set 164 0 0 132
Total 364 80 109 233
; E Scecond stage decisions: Pallerns
i s Machine No. C/C A/C C/h A/A Congidered
- 1 10 0 6 1 Excl, Training st
2 7 3 4 3 v
3 10 0 4 3 "
4 7 3 3 4 "
1 31 0 5 16 Training set
2 26 5 6 15 "
3 31 0] ] 20 !
4 29 2 5 16 "
1 41 v 11 17 All
3 2 33 & 10 18 "
3 41 0 5 23 "
4 36 5 8 20 "

"
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Tdbiu 5-5

Pattern Classifier Results
Modified Parallel Hyperplane Tirst Stage Implementation

Category One Data -- Measure Sel A

Number of I'irst Stage lyperplanes -- 9

First stage - second layer decisions;

c/C r/C C/A A/
cxcludi 118
Lxcluding 204 76 118 32
Training sub-set
Training sub-set 144 20 16 #6
Total 348 96 164 178

Sccond stage decisions: N
Pattorns

Machine No. c/C A/C C/A AN Considered
1 3 2 5 2 Lucl. training set
2 8 2 5 2 "
3 7 3 5 2 v
4 6 4 4 3 v
1 29 2 11 10 Training set
2 20 5 12 9 u
3 28 3 9 12 "
4 28 3 O 5 "
i 37 4 16 12 All
2 34 7 17 11 "
3 35 6 14 14 v
4 34 7 10 18 v

i

[ IRTIRRY I BT P T

saltlailiw v
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Table 5-6

Pattern Classifier Results
Modified Parallel Hyperplane Tirst Stage Implementation

Category One Data -- Measure Set B

Number of T'irst Stage Iyperplanes -- 9
Tirst siage - second layer decisions:
= C / > s
H Lxcluding < AL 2 /A
Training sub-set 217 63 130 80
Training sub-sct 140 24 38 94
Total 357 87 168 174

Second stage decisions:
J Patlterns

Machinc No. c/C A/C C/A I/ A Considered

1 Y 1 5 2 Lxcl. training set
2 9 ] 4 3 !

3 9 1 5 2 "

4 8 2 3 4 "

1 27 4 6 15 Training set
2 27 4 7 14 "

3 27 4 1 17 v

4 29 2 5 16 "

1 36 5 11 17 All

2 36 5 11 17 "

3 36 S 9 19 "

4 37 4 8 2 "




Table 5-7

Pattern Classifier Results
Fixed Radius Ilypersphere Clustering Iirst Stage Implementation

Calegory One Data -~ Measu.'e Sei A

Number of first stage prototvpe points;
Cough - § Artifact - ¢

First stage - sccond layer decisions:

c/c AC C/A M A

Exclucing 178 102 63 147
Training sub-set
Training sub-sct 109 95 45 87
Tota! 287 157 108 234
Sccond stage decisions: )
Patterns
Machine No. C/C A/C C/h A/A Considered
1 9 1 4 3 Excl. training sect
2 8 2 5 2 "
3 9 ] 4 3 "
4 9 1 2 ) "
1 26 S 5 16 Training set
2 28 3 14 7 "
3 26 5 q 17 "
4 30 1 4 17 "
i 35 IS 9 19 All
2 36 S 19 9 .
3 35 6 8 20 .
4 39 2 6 22 "
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Table 5-8

Patiern Classifier Results

Tixed Radius Hypersphere Clustering First Stage implementation

Category On2 Data -- Measure Sut B

Number of first stage prototype points:
Cough -~ 4 Artifact - 8

Tirst stage - second layer decisions;

G/C A/C C/A A/A
Ercluding = gy 90 48 152
Training sub-set
" fraining sub-set 75 8% 40 92
Total 265 179 88 254
Second stage decisions: Palterns
Machine No. C/C AC C/A A/A Considered
1 10 0 4 3 Excl. Training set
2 10 0 2 5 "
3 10 0 4 3 "
4 9 1 5 2 "
1 25 o 8 13 Training set
2 28 3 14 7 "
3 25 6 8 13 "
4 28 3 3 18 "
1 35 6 12 16 All
2 38 3 16 12 "
3 35 6 12 16 "
4 37 4 8 20 "




Table 5-9

Pattern Classifier Results
Tinal Machine Configuration*

Caicgory One Data -- Mecasure Sct A

Number of first stage prototype points:

Cough ~ 18

First stage - second layer decisions:

[e7d e}

Ixcluding 222

Training sub-set

Training sub-set 151
Total 373

Scecond stage declsions:
Machine No. c/C
1

U W N

30
29
28
30
31

@b W

38
38
35
38
37

(62 SN SV So I

*

Artifact - 13

NC C/A A/A
58 77 133
13 35 97
71 112 230
Patcerns
AC C/A AN Considered
2 4 3 Lxcl, training set
1 S 2 "
3 4 3 "
2 Z 5 "
4 3 4 "
1 5 16 Training set
2 15 6 "
3 3 18 "
1 4 17 "
0 3 18 "
3 9 19 All
3 20 8 "
6 7 2] 1
3 6 22 "
4 6 22 "

First stage prototype points computed by an iterative algorithin,
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Table 5=~10

Pattern Classifier Results
T'inal Machine Configuraticn

QAU

Category One Data -- Measure Set B

Number of first stage prototype points:
Cough - 16 Artifact - 15

Tirst stage - sccond layer decisions:

Cc/C AC C/N A/A
Excluding 210 70 44 166
Training sub-gset
Training sub-set 137 27 9 103
Total 347 97 73 269
CocOone e . :
Second stage decisions: Patterns
Machine No. C/C. r/C C/A A/A Considered
1 9 1 3 4 Excl. training set
2 9 1 5 2 "
3 9 1 0 7 "
4 9 1 4 3 "
S 9 1 0 7 "
] 26 5 10 11 Trainiyg set
2 27 4 7 14 "
3 26 £ S 16 "
4 2 3 4 17 "
5 29 2 5 16 "
] 35 4] 13 15 All
2 36 S 12 16 "
3 35 6 5 23 "
4 37 4 8 20 "
) 34 3 5 23 o
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Table 5-11

Paitern Classifiier Resgults
Tinal Machine Configuraiion

Category One Data -- Measure Set ¢

Nuniber of first stage prototyge points:

Cough - 15 Artifoet - 13

First stage - second layer decisions:

c/c A/C ClA Ma
Lxcluding 208 72 114 96
Training sub-set
Training sub-sct 134 30 42 89
Total 342 102 157 185
Second stage decisions: Patterus
Machine No. c/C AC C/A A/A Considered
] 8 2 5 2 Lxcl. training set
2 7 3 5 2 "
3 8 2 4 3 "
4 8 2 1 6 "
S 8 2 4 3 "
1 24 7 C 13 Training set
2 19 12 14 7 u
3 25 6 8 13 "
4 23 8 3 18 "
5 27 4 6 15 v
1 32 9 13 15 All
2 26 15 19 9 "
3 33 8 12 16 "
4 31 10 4 241 "
) 35 6 10 18 "
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Table 5-12

Pattern Classifier Results
Final Machine Configuration

Category Two Dala — Measure Set B

Number of first stage prototype points:
Cough - 15 Artifact - 15

First stage - second layer decisions:

c/C AC C/A A/A
Excluding 247 115 205 439
Training sub-set
Training sub-set 93 i5 46 160
Total 340 130 251 599
Second stage decisions: Patterns
Machnine No., C/C A/C C/A A/A Considered
1 S50 6 2 12 Lxcl, adaining set
2 44 12 3 11 "
3 31 25 2 12 '
4 46 10 1 13 "
5 37 19 5 9 "
1 50 6 2 12 Training sect
2 36 20 5 9 "
3 37 19 2 12 "
4 53 3 2 12 "
5 418 8 2 12 "
1 100 12 4 24 All
2 80 32 8 20 "
3 ! 44 4 24 "
4 99 13 3 25 "
5 85 7 7 21 "
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Table 5-13
Pattern Classifier Results N
I'inal Machine Configuraticn i ‘ P
Catcgory Two Data - Measure Set C
Number of first stage prototype points; - E
Cough - 13 Artifact -~ 14
Tirst stage - second layer decisions:
c/c N C C/h AA
Lxcluding 305 57 186 458
Training sub-set ¢
1raining sub-sect Se6 12 20 186 :
Total 401 69 206 644 -
Seconc stage decisions: Patterns
Machine No. c/C AC C/A A A Considercd -
1 51 5 1 13 Excl, t1taining set ’
2 56 C 1 13 "
3 54 2 1 13 " ) v
4 53 3 1 13 " :
5 55 1 2 1 "
1 50 G 0 1 Training set
2 55 | 1 13 "
E ]
i 46 10 0 14 "
4 55 1 1 13 "
5 56 0 14 "
1 101 11 1 27 Ahll
2 111 1 2 VAd "
3 100 12 1 27 " :
4 108 4 2 26 "
5} 111 1 2 26 "
Percent correct classifications (all patierns):
Machine No., Cough Nitifact Overall
1 90.1 96.4 91.4
2 99,1 92.8 97.9
3 89.3 96.4 80.7
4 90.4 92.8 95.7
5 99.1 92.8 97.9
|
i




T

101

Table 5-14

Pattern Classifier Results
Tina! Machine Conf{iguration

Category Two Data - Measure Set D

Number of first stage prototype points;
Cough - 15 Artifact - 12

NI b 1t

First stage - second layer decisions:

c/c MC. C/h MM

0 o N A

Excluding

Training sub-sct 303 59 140 501
Training sub-sect 98 10 24 182
Total 401 69 164 686

Second stage decisions:
9 = 2 Pattcinsg

Machine No. c/C A/C C/A AN Considared
1 49 7 1 13 Lxcl. training sct
2 51 5 1 13 "

3 50 6 1 13 "
4 51 5 1 13 "
5 53 3 3 11 "
1 51 5 0 14 Training sct
2 52 1 1 13 "
3 48 8 1 13 "
4 o2 4 0 14 "
5 54 2 0 14 "
1 100 12 ] 27 All
2 103 9 2 26 "
3 98 14 A 26 "
4 103 9 1 27 "
o 107 5 3 25 "




102

All of the preliminary machines investigated show a pronounced
tendency to classify artifacts as coughs when applied to patterns not in
the training set,

The second stage of the pattern classifer presumes statistical
indopcndencc' of the binary input. That this assumption is {lagrantly
violated with respect Lo machines 2 and 4 in the parallel hyperplane con=
figuration is reflected in the classification results, It is noted that,
although measure set Bais of lower dimensionality than measure set A,
therc is no apparent degradation of classifier performance. This can
probably be traced to approximately eyual number of hyperplanes imple-
mented by the {irst stage for both measure sets,

An overall evaluation of this configuration indicates that it is
somewhatl less than satisfactory for the data with which the rescarch
described by this digscertation is concernced,

Tables 5=5 and $-6 arce tabulations of the 1esults obtained for @

Mo -1

1 | I R
sy t

e B ST I AN el e e
JE pdiailt Lty puipi -

PN
QLI 141,

Lt slage conligura
resulted in a cell defined by adjacent hyperplanes being deleted unless
it was vccupled by at least 1% of the taining sub-scgmments,

1t would be expected that classification sesults would be degraded
because of the lower dimensionality of the binary vector prescented Lo
machines 2 and 4 of the sccond glaye of the patiern classitict and because

of the increascd nember of crrors in the first stage-second layer decisions,
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which would be reflected as an increased error rate for machines 1 and 3.
That such was the case is apparent from a comparison of the classification
results on the training set for machine 3,

Tables 5-7 and 5-8 are tabulations of the results achicved by ihe
preliminary machine which uscs as a first stage a minimum dislance
clasaifier with respect tc point sets.

The prototype points are determined by assigning a training sub-
segment Lo an existing cluster (for which the prototype points are centroids)
if it is within a pre-specified distance {rom its centroid and then updating
the mean value of the cluster. If no such cluster exists, the training sub-
segment is uscd to define a new cluster centroid, This procedure was
reiterated until all training sub-segments had becen assigned te a cluster.,
Cough and artifact training sub-segmenls were considered separately. A
maximum of twenty clusters was allowed for cach of the classes. If
training sub-scgments existed for which clusters were not found after the
maximum number of allowable clusters had been formed, the radius of the

mem v ) ey i 4 e ~ -1 .y = = & |
JodiiLdly Wado dhiv i t

ICasCa })y a 5ilidt
fixed increment and the process repeated. This was continued until all
training sub-segments had been assigned to a cluster.,

Unless at least seven of the artifact training  sub-segments or
cight of the cough sub-scgments {ell within a cluster boundary, the

centroid of the cluster was deleted from the set of pretotype points. The

1esults indicated that this requitement resulted in the deletion of too many
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of the originally determined prototype points. Although improved results
could have been expocted had a modification to the above procedure been

made, the configuration was so similar to that of the final configuration

sclected that only investigation of the latter was pursued.
The estimated a priori occurrence of a ¢ .gh was 0.596., It was
noted that in no case did this a priori probability change the decision which

would have becn made had a meximuwn likelihcod criterion been used.

5.5.2 Tinal Machine Configuration Results

Tables 5-9 through 5-11 are tapulations of the results of machine
training and recognition on category one data. Tables 5-12 through 5-14
display the results for category two data. As previously noted, for category
two data, the machine decisions are maximum lilikelihood classifications.

The "minimum distance with regard io point sets" first stage configura-
tiorlj_cgf this machine differed ifrom that of the machine previously discussed
only in the manncr in which the prototype points were determined., As before,
a maximum of twenty each artifact and cough clusters were allowed. Prior
to training.these forty clusters were assigned arbitrarily valued centroids.
During training, a sub-segment was assigned Lo the cluster within its class

(cough or artifact) for which the distance between the sub-segment and the

cluster centroid were closest (in the Luclidian sense) compared to the other
clusters within the class. The centroid of the cluster so chosen was then

updated to include the newly assigned sub-segment.
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The distance of the cluster centroids from the origin were stored
in central memory. When a centroid was updated, the change in its
distance from the origin was computed. The training sub-set was pre-
sented repeatedly until the changes in distance {rom the centroids of all
clusters to the origin were negligible, at which time first stage training
was complete, Clusters which contained iess than three of the training
sub-cegments were deleted.

A comparison of Tables 5-9 and 5-10 again indicates that the
pattern sect with the lowest dimensionality yields a higher percentage of
correct decisions. This is probably due to the relaiive number of cough
and artifact prototype points implemented by the first stage of the classi-
fier. For the noisy category one signa.s, an increase in dimensionality of
the pattern results in & greater percentaue oi pattern space being occupied
by cough patterns with a resultant increasz2 in the aumber of erroneous
artifact classifications,

In Table 5-10 it will be noted that although the classification for
patterns excluding the training set results are quite acceptable for
Machines 3 and 5, the overall training resulls on the total data sct
indizate that if additional patterns were included in the data o highel
error rate would result.

The results obtained by the use of the mecaswes contained in

moasure set C (which was chusen on the basis of category two data)
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for the classification of category one data are tabulated in Table 5-11.
It was not o:pected that this set of measures would yield as high a
percentage of correct classifications as measures choscn on the basis
of category one¢ data if the measure selection technigue used was valid.
It will be noted that such was the case.

The same argument applies to the case for which the results are
tabulated in Table 5-12.

The training and classification results for category two data with
respect to the measures chosen from a consideration of category two data
are listed in Tables 5-13 and 5-14. As would normally be expected,
measure set C (fifty dimensions) yiclded fewer erroncous classifications
than did mcasure set D (twenty-{ive dimensions).

The results indicate that second stage machines two, four and five
appear to be morc satisfactory than machines one and three. If the pattern
ctassifier was to be realized by real time circuitry, machine 5 should be

oA mdirmen Tt o~ Ve b g v e e
USCO 5450 vCWET CaiCuLlalioils are re

uired for this configuralion L
uireu QI Ll s CutllayguraLiornl, 111lS

would result in less complex circuitry.




CHAPTER VI

CONCLUSIONS

6.1 Summary and Recommendations

ARTPONIA T IR IR

A modecel for a pattern classifier which yiclds usable results has

been presented. The model circumvents the difiiculties attached to esti-

A R

il

mating a conditional multi-dimensional probability function by effecting C

R LITHIGT

a prelininary piecewise lincar partition of pattern space and assigning

binary values to the resulting cells.
More satisfactory results were oblained for simulated data than

for data recorded in the hogpital environment, It was postulated that this

was due to the presence of contaminating noise in the category one data.

Use of the simulated data was justifiable since a real time machine would

probably be placed in close proximity to the patient being monitored, This

would resulr in higher qualily signals bcing available at the inpul o the

classifier.

indicate that the procedure is adequate for a preliminary selection of
measures, but that a final selection of a set of measures should be made
on an cmpirical basis.

The measurcs sclected for usc by the various clasgsifiers arc satis-
factory for cither real time or general purpose computer recognition. In

the latter case, however, analog pre-processing to obtain a representation

107
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of the spectral measures is appropriate due to the disproportionate calculation
time required to compute these measures. Segmentation and thresholding of
the signals should be implamanted prior to digiti zation of the data.

iIf the present recording procedure is continued, an effort should be
made to Improve the quality of the resulting signal,

ILxperimental results indicate that the assumption of Markoff-1
dependency between the data sub-segments is a reasonable hypothesis.
The configuration based on this assumption (machine number 5) may be
implemented more simply by real time circuitry and reguires fewer recog-
nition computations by a general purposc machine than other machinas with

comparable results. It should thercfore be chosen for the realization of

e recognition process. This conclusion would not necessarily be valid
if the pattern classifier was applised to data originating fron. an experiment
other than that considered in this research,
6.2 Application Extensions
The model presented in this paper is suitable for use (with
slight moditicetion) with numerous types of data, the primary requiremcnt
oeing that sequentiial segments of data from the same qlass be available.
An application directly rclated to that described by this paper
would be the classification of coughs as hzving criginated from a patient
suffering from irreversible lung damage as contrasted with coughs emanat-
ing from a r'espjrdtor'y system in which the cough cousing factors are of a

tempoirary or reversible nature. The physiolegical model indicates that a

,
!
it A0
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cifference in the audible characteiistics of the coughs (and possibly forced
cxpirations) probably exists,

A study of the statistical characteristics of the measures calculated
and their relationship to the physiologizal model would be rewarding.
Additionally, such a study would indicate the degree of correlation between
the various measures., If two or morc measurcs are highly correlated sta-

tistically, only one should be used in the recognition piocess.
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